基于纳米孔器件的光响应分子的应用

唐婧 王森 吴吉 梁丽媛 王亮 王德强

引用本文: 唐婧, 王森, 吴吉, 梁丽媛, 王亮, 王德强. 基于纳米孔器件的光响应分子的应用[J]. 分析化学, 2020, 48(11): 1458-1466. doi: 10.19756/j.issn.0253-3820.201247 shu
Citation:  TANG Jing,  WANG Sen,  WU Ji,  LIANG Li-Yuan,  WANG Liang,  WANG De-Qiang. Applications of Photo-Responsive Molecules in Nanopore-based Devices[J]. Chinese Journal of Analytical Chemistry, 2020, 48(11): 1458-1466. doi: 10.19756/j.issn.0253-3820.201247 shu

基于纳米孔器件的光响应分子的应用

    通讯作者: 梁丽媛,liangliyuan@cigit.ac.cn; 王德强,dqwang@cigit.ac.cn
  • 基金项目:

    本文系重庆市自然科学基金项目(No.cstc2017jcyjB0105)、中国科学院青年创新促进会项目(No.2017392)和中国科学院大学重庆学院资助

摘要: 探索生物大分子和小分子的构象以及它们在外界环境中的响应和作用规律对理解有机质的结构与性能的关系十分重要。纳米孔作为新兴的第三代单分子基因测序技术,可以实时监测待测物分子的构象变化过程,在单分子检测及核酸和蛋白测序方面展现了良好的应用前景。为了进一步提高检测的分辨率和精确度,可以采用光电联合检测方法,通过引入光响应分子以满足更高的检测需求。本文综述了目前纳米孔器件的研究进展以及代表性光响应分子在纳米孔检测系统中的设计与应用,主要介绍了偶氮苯及其衍生物、螺吡喃和二芳基乙烯三类光响应分子分别在生物孔和固态孔中的光响应性能。光调控是一种操作简捷有效的分子结构监控方式,其与纳米孔检测技术的结合在单分子识别方面的应用潜力对多功能纳米器件的设计与应用具有重要的指导意义。

English


    1. [1]

      Neidle S, Read M A. Biopolymers, 2000,56(3):195-208

    2. [2]

      Venkatesan B M, Bashir R. Nat. Nanotechnol., 2011,6(10):615-624

    3. [3]

      Piguet F, Ouldali H, Pastoriza-Gallego M, Manivet P, Pelta J, Oukhaled A. Nat. Commun., 2018,9(1):966

    4. [4]

      Gao R, Ying Y L, Li Y J, Hu Y X, Yu R J, Lin Y, Long Y T. Angew. Chem. Int. Ed., 2018,57(4):1011-1015

    5. [5]

      Jain M, Koren S, Miga K H, Quick J, Rand A C, Sasani T A, Tyson J R, Beggs A D, Dilthey A T, Fiddes I T, Malla S, Marriott H, Nieto T, O'Grady J, Olsen H E, Pedersen B S, Rhie A, Richardson H, Quinlan A R, Snutch T P. Nat. Biotechnol., 2018,36(4):338-345

    6. [6]

      Ding T L, Yang J, Pan V, Zhao N, Lu Z H, Ke Y G, Zhang C. Nucleic Acids Res., 2020,48(6):2791-2806

    7. [7]

      Hall A R, Scott A, Rotem D, Mehta K K, Bayley H, Dekker C. Nat. Nanotechnol., 2010,5(12):874-877

    8. [8]

      Farimani A B, Dibaeinia P, Aluru N R. ACS Appl. Mater. Interfaces, 2017,9(1):92-100

    9. [9]

      Ying Y L, Long Y T. Sci. China Chem., 2017,60(9):1187-1190

    10. [10]

      Pang H, Xu P P, Li C L, Zhan Y B, Zhang Z Y, Zhang W S, Yang G F, Sun Y, Li H B. Chem. Commun., 2018,54(24):2978-2981

    11. [11]

      Wang J, Song Q T, Guo X G, Cui X, Tan L X, Dong L C. Anal. Chem., 2019,91(22):14530-14537

    12. [12]

      Mathiyazhakan M, Wiraja C, Xu C J. Nano-Micro Lett., 2018,10(1):10

    13. [13]

      Wu Z T, Zhang L. Biomater. Sci., 2019,7(12):4944-4962

    14. [14]

      Mutter N L, Volaric J, Szymanski W, Feringa B L, Maglia G. J. Am. Chem. Soc., 2019,141(36):14356-14363

    15. [15]

      Wang G L, Bohaty A K, Zharov I, White H S. J. Am. Chem. Soc., 2006,128(41):13553-13558

    16. [16]

      Ma T J, Walko M, Lepoitevin M, Janot J M, Balanzat E, Kocer A, Balme S. Adv. Mater. Interfaces, 2018,5(2):1701051-1701059

    17. [17]

      Meng F N, Li Z Y, Ying Y L, Liu S C, Zhang J, Long Y T. Chem. Commun., 2017,53(68):9462-9465

    18. [18]

      Ying Y L, Li Z Y, Hu Z L, Zhang J J, Meng F N, Cao C, Long Y T, Tian H. Chem, 2018,4(8):1893-1901

    19. [19]

      Spitzberg J D, Zrehen A, van Kooten X F, Meller A. Adv. Mater., 2019,31(23):1900422

    20. [20]

      Zhang P, Jiang J, Yuan R, Zhuo Y, Chai Y. J. Am. Chem. Soc., 2018,140(30):9361-9364

    21. [21]

      Francis W, Dunne A, Delaney C, Florea L, Diamond D. Sens. Actuators B, 2017,250:608-616

    22. [22]

      Ligorio G, Cotella G F, Bonasera A, Zorn Morales N, Carnicella G, Kobin B, Wang Q, Koch N, Hecht S, List-Kratochvil E J W, Cacialli F. Nanoscale, 2020,12(9):5444-5451

    23. [23]

      Hohsaka T, Kawashima K, Sisido M. J. Am. Chem. Soc., 1994,116(1):413-414

    24. [24]

      Liang X G, Hiroyuki A, Hiromu K, Akitsugu T, Taiichi S, Gota K, Makoto K. J. Am. Chem. Soc., 2003,125(52):16408-16415

    25. [25]

      Wu D, Wang Y T, Fang W H, Cui G L, Thiel W. Chem. Asian J., 2018,13(7):780-784

    26. [26]

      You M X, Huang F J, Chen Z, Wang R W, Tan W H. ACS Nano, 2012,6(9):7935-7941

    27. [27]

      Phillips J A, Liu H P, O'Donoghue M B, Xiong X L, Wang R W, You M X, Sefah K, Tan W H. Bioconjugate Chem., 2011,22(2):282-288

    28. [28]

      Bergen A, Rudiuk S, Morel M, Le Saux T, Ihmels H, Baigl D. Nano Lett., 2016,16(1):773-780

    29. [29]

      Sun Y, Zhang F, Quan J X, Zhu F, Hong W, Ma J K, Pang H, Sun Y, Tian D M, Li H B. Nat. Commun., 2018,9:2617

    30. [30]

      Lin Y, Ying Y L, Gao R, Long Y T. Chemistry, 2018,24(50):13064-13071

    31. [31]

      YANG Jie, LI Shuang, WU Xue-Yuan, LONG Yi-Tao. Chinese J. Anal. Chem., 2017,45(12):1766-1775 杨洁, 李爽, 武雪原, 龙亿涛.分析化学,2017,45(12):1766-1775

    32. [32]

      Du G Y, Lou L Y, Guan S W, Peng Y Y, Qiao H W, Liu P L, Wu D. J. Mater. Chem. B, 2019,7(26):4177-4183

    33. [33]

      Ye Z C, Yang Z Y, Wang L, Chen L X, Cai Y M, Deng P C, Feng W, Li X P, Yuan L H. Angew. Chem. Int. Ed., 2019,58(36):12519-12523

    34. [34]

      Tian T, Song Y Y, Wei L, Wang J Q, Fu B S, He Z Y, Yang X R, Wu F, Xu G H, Liu S M, C G Li, Wang S R, Zhou X. Nucleic Acids Res., 2017,45(5):2283-2293

    35. [35]

      Gao C, Huang Q X, Lan Q P, Feng Y, Tang F, Hoi M P M, Zhang J X, Lee S M Y, Wang R B. Nat. Commun., 2018,9:2967

    36. [36]

      Wang D S, Wagner M, Saydjari A K, Mueller J, Winzen S, Butt H J, Wu S. Chemistry, 2017,23(11):2628-2634

    37. [37]

      Eggenberger O M, Ying C F, Mayer M. Nanoscale, 2019,11(42):19636-19657

    38. [38]

      Xie G H, Li P, Zhao Z J, Zhu Z P, Kong X Y, Zhang Z, Xiao K, Wen L P, Jiang L. J. Am. Chem. Soc., 2018,140(13):4552-4559

    39. [39]

      Xie G H, Li P, Zhao Z J, Kong X Y, Zhang Z, Xiao K, Wang H T, Wen L P, Jiang L. Angew. Chem. Int. Ed., 2018,57(51):16708-16712

    40. [40]

      Liu P, Xie G H, Li P, Zhang Z, Yang L S, Zhao Y Y, Zhu C C, Kong X Y, Jiang L, Wen L P. NPG Asia Mater., 2018,10(8):849-857

    41. [41]

      Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E. Biochem. Soc. Trans., 2005,33(4):863-836

    42. [42]

      Shi L, Mu C L, Gao T, Chai W X, Sheng A Z, Chen T S, Yang J, Zhu X L, Li G X. J. Am. Chem. Soc., 2019,141(20):8239-8243

    43. [43]

      Luchian T, Park Y, Asandei A, Schiopu I, Mereuta L, Apetrei A. Acc. Chem. Res., 2019,52(1):267-276

    44. [44]

      Ren H, Cheyne C G, Fleming A M, Burrows C J, White H S. J. Am. Chem. Soc., 2018,140(15):5153-5160

    45. [45]

      Cao C, Ying Y L, Hu Z L, Liao D F, Tian H, Long Y T. Nat. Nanotechnol., 2016,11(8):713-718

    46. [46]

      Liao D F, Cao C, Ying Y L, Long Y T. Small, 2018,14(18):1704520

    47. [47]

      Hu Z L, Li Z Y, Ying Y L, Zhang J, Cao C, Long Y T, Tian H. Anal. Chem., 2018,90(7):4268-4272

    48. [48]

      Tanaka K, Caaveiro J M, Morante K, Gonzalez-Manas J M, Tsumoto K. Nat. Commun., 2015,6:6337

    49. [49]

      Wloka C, Mutter N L, Soskine M, Maglia G. Angew. Chem. Int. Ed., 2016,55(40):12494-12498

    50. [50]

      Huang G, Willems K, Soskine M, Wloka C, Maglia G. Nat. Commun., 2017,8:935

    51. [51]

      Huang G, Voet A, Maglia G. Nat. Commun., 2019,10:835

    52. [52]

      Howlader P, Mondal B, Purba P C, Zangrando E, Mukherjee P S. J. Am. Chem. Soc., 2018,140(25):7952-7960

    53. [53]

      Yamamoto T, Yurieva E A, Tsuda K, Hosomi T, Aldoshin S M, Einaga Y. Phys. Status Solidi RRL, 2017,11(9):1700161

    54. [54]

      Raisch M, Genovese D, Zaccheroni N, Schmidt S B, Focarete M L, Sommer M, Gualandi C. Adv. Mater., 2018,30(39):e1802813

    55. [55]

      Hong Y X, Zhang P S, Wang H, Yu M L, Gao Y, Chen J. Sens. Actuators B, 2018,272:340-347

    56. [56]

      Godin A G, Setaro A, Gandil M, Haag R, Adeli M, Reich S, Cognet L. Sci. Adv., 2019,5(9):aax1166

    57. [57]

      Glaeske M, Bluemmel P, Juergensen S, Setaro A, Reich S. J. Phys. Condens. Matter, 2017,29(45):454003

    58. [58]

      Miao W G, Wang S, Liu M H. Adv. Funct. Mater., 2017,27(29):1701368

    59. [59]

      Kitagawa D, Tsujioka H, Tong F, Dong X N, Bardeen C J, Kobatake S. J. Am. Chem. Soc., 2018,140(12):4208-4212

    60. [60]

      Lyndon R, Konstas K, Evans R A, Keddie D J, Hill M R, Ladewig B P. Adv. Funct. Mater., 2015,25(28):4405-4411

    61. [61]

      Roubinet B, Bossi M L, Alt P, Leutenegger M, Shojaei H, Schnorrenberg S, Nizamov S, Irie M, Belov V N, Hell S W. Angew. Chem. Int. Ed., 2016,55(49):15429-15433

    62. [62]

      Roubinet B, Weber M, Shojaei H, Bates M, Bossi M L, Belov V N, Irie M, Hell S W. J. Am. Chem. Soc., 2017,139(19):6611-6620

    63. [63]

      Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F. Science, 2016,352(6292):1443-1445

    64. [64]

      Fan C B, Gong L L, Huang L, Luo F, Krishna R, Yi X F, Zheng A M, Zhang L, Pu S Z, Feng X F, Luo M B, Guo G C. Angew. Chem. Int. Ed., 2017,56(27):7900-7906

    65. [65]

      Mi Y S, Cheng H B, Chu H Q, Zhao J, Yu M M, Gu Z J, Zhao Y L, Li L L. Chem. Sci., 2019,10(44):10231-10239

    66. [66]

      Miao Q Q, Xie C, Zhen X, Lyu Y, Duan H W, Liu X G, Jokerst J V, Pu K. Nat. Biotechnol., 2017,35(11):1102-1110

  • 加载中
计量
  • PDF下载量:  11
  • 文章访问数:  881
  • HTML全文浏览量:  119
文章相关
  • 收稿日期:  2020-04-30
  • 修回日期:  2020-06-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章