高灵敏、宽动态范围纳米流式检测装置的研制及应用

毛翠萍 林垚 牛倩 薛乘风 颜晓梅

引用本文: 毛翠萍,  林垚,  牛倩,  薛乘风,  颜晓梅. 高灵敏、宽动态范围纳米流式检测装置的研制及应用[J]. 分析化学, 2020, 48(7): 838-846. doi: 10.19756/j.issn.0253-3820.201227 shu
Citation:  MAO Cui-Ping,  LIN Yao,  NIU Qian,  XUE Cheng-Feng,  YAN Xiao-Mei. Development and Applications of A Highly Sensitive and Wide Dynamic Range Nano-Flow Cytometer[J]. Chinese Journal of Analytical Chemistry, 2020, 48(7): 838-846. doi: 10.19756/j.issn.0253-3820.201227 shu

高灵敏、宽动态范围纳米流式检测装置的研制及应用

  • 基金项目:

    本文系国家自然科学基金项目(Nos.21627811,21934004)资助

摘要: 基于纳米颗粒固有的多分散性,对其粒径及分布快速地进行高分辨表征是纳米颗粒相关研究和产品开发所面临的重大挑战。与电子显微镜、原子力显微镜、动态光散射、纳米颗粒追踪分析等常规使用的纳米颗粒表征技术相比,流式细胞术具有可单颗粒检测、快速、多参数、统计精确性高等优势。然而,由于检测灵敏度的局限性,商品化流式细胞仪难以检测粒径小于200 nm的聚苯乙烯纳米颗粒。结合瑞利散射和鞘流单分子荧光检测技术,本研究组研制了纳米流式检测装置(Nano-flow cytometer,nFCM),采用单光子计数雪崩光电二极管(Single photon counting avalanche photodiode,APD)作为检测器,低折射率二氧化硅纳米颗粒(SiO2 NPs)的检测下限可达到24 nm,可基线分辨47、59、74、94和123 nm的SiO2 NPs混合样本。由于nFCM散射光检测动态范围受限于单光子探测器的最大光子计数值,而纳米颗粒的散射光强度随粒径的增大呈指数上升,为实现纳米颗粒更全面的粒径分布检测,仪器的检测动态范围有待提升。本研究采用激光光束整形、双光阑降低背景信号、高量子效率光电倍增管检测器等策略对仪器进行多方位改进,以研制高灵敏、宽动态范围的nFCM。改进后的nFCM可实现直径59 nm SiO2 NPs的高信噪比检测(S/N=119),可基线分辨59、74、94、123、160、180和222 nm的SiO2 NPs混合样本,相比以APD为检测器的nFCM,粒径检测范围扩展约100 nm,并成功用于鼠伤寒沙门氏菌外膜囊泡(Outer membrane vesicles,OMVs)粒径分布的快速测定。

English


    1. [1]

      Zheng K Y, Setyawati M I, Leong D T, Xie J P. Coord. Chem. Rev.,2018,357:1-17

    2. [2]

      Barile L, Vassalli G. Pharmacol. Ther.,2017,174:63-78

    3. [3]

      Dadfar S M, Roemhild K, Drude N I, Stillfried S V, Knuchel R, Kiessling F, Lammers T. Adv. Drug Deliver. Rev.,2019,138:302-325

    4. [4]

      Beik J, Khateri M, Khosravi Z, Kamrava S K, Kooranifar S, Ghaznavi H, Shakeri-Zadeh A. Coord. Chem. Rev.,2019,387:299-324

    5. [5]

      Wu Z P, Wang Y L, Liu X B, Lv C, Li Y S, Wei D, Liu Z F. Adv. Mater.,2019,31(9):e1800716

    6. [6]

      Li T T, Shi S X, Goel S, Shen X, Xie X X, Chen Z Y, Zhang H X, Li S, Qin X, Yang H, Wu C H, Liu Y Y. Acta Biomater.,2019,89:1-13

    7. [7]

      Jin W, Maduraiveeran G. Trends Environ. Anal.,2017,14:28-36

    8. [8]

      Bai X, Wang S Q, Yan X L, Zhou H Y, Zhan J H, Liu S, Sharma V K, Jiang G B, Zhu H, Yan B. ACS Nano,2020,14(1):289-302

    9. [9]

      Homaeigohar S, Kabir R, Elbahri M. Sci. Rep.,2020,10:5191

    10. [10]

      Zhou J J, Chizhik A I, Chu S, Jin D Y. Nature,2020,579(7797):41-50

    11. [11]

      Vanderpol E, Coumans F A W, Grootemaat A E, Gardiner C, Sargent I L, Harrison P, Sturk A, van Leeuwen T G, Nieuwland R. J. Thromb. Haemost.,2014,12(7):1182-1192

    12. [12]

      Shapiro H M. Practical Flow Cytometry; Hoboken:John Wiley & Sons, Inc.,2003

    13. [13]

      Zhu S B, Ma L, Wang S, Chen C X, Zhang W Q, Yang L L, Hang W, Nolan J P, Wu L N, Yan X M. ACS Nano,2014,8(10):10998-11006

    14. [14]

      Zhu S B, Yang L L, Long Y, Gao M, Huang T X, Hang W, Yan X M. J. Am. Chem. Soc.,2010,132(35):12176-12178

    15. [15]

      Yang L L, Zhu S B, Hang W, Wu L, Yan X M. Anal. Chem.,2009,81(7):2555-2563

    16. [16]

      Zhang S Y, Zhu S B, Yang L L, Zheng Y, Gao M, Wang S, Zeng J Z, Yan X M. Anal. Chem.,2012,84(15):6421-6428

    17. [17]

      Ma L, Zhu S B, Tian Y, Zhang W Q, Wang S, Chen C X, Wu L N, Yan X M. Angew. Chem. Int. Edit.,2016,55(35):10239-10243

    18. [18]

      Chen C C, Zhu S B, Wang S, Zhang W Q, Cheng Y, Yan X M. ACS Appl. Mater. Interfaces,2017,9(16):13913-13919

    19. [19]

      Tian Y, Ma L, Gong M F, Su G Q, Zhu S B, Zhang W Q, Wang S, Li Z B, Chen C C, Li L H, Wu L N, Yan X M. ACS Nano,2018,12(1):671-680

    20. [20]

      Lawrence W G, Varadi G, Entine G, Podniesinski E, Wallace P K. Proc. SPIE,2008,6859:68590M

    21. [21]

      Zhao J J, You Z. Biomicrofluidics,2016,10(5):054111

    22. [22]

      Shapiro H M. In Current Protocols in Cytometry:John Wiley & Sons, Inc.,2001:1.6.1-1.6.5

    23. [23]

      Perfetto S P, Chattopadhyay P K, Wood J, Nguyen R, Ambrozak D, Hill J P, Roederer M. Cytometry A,2014,85(12):1037-1048

    24. [24]

      Zhang W Q, Tian Y, Hu X X, He S B, Niu Q, Chen C, Zhu S B, Yan X M. Anal. Chem.,2018,90(21):12768-12775

    25. [25]

      The Micro-Plus Flow Cytometer, Apogee Flow Systems, http://www.apogeeflow.com/products.php

    26. [26]

      Roier S, Zingl F G, Cakar F, Durakovic S, Kohl P, Eichmann T O, Klug L, Gadermaier B, Weinzerl K, Prassl R, Lass A, Daum G, Reidl J, Feldman M F, Schild S. Nat. Commun.,2016,7:710515

    27. [27]

      Schulz E, Goes A, Garcia R, Panter F, Koch M, Muller R, Fuhrmann K, Fuhrmann G. J. Control Release,2018,290:46-55

    28. [28]

      Berleman J, Auer M. Environ. Microbiol.,2013,15(2):347-354

    29. [29]

      Toyofuku M, Nomura N, Eberl L. Nat. Rev. Microbiol.,2019,17(1):13-24

  • 加载中
计量
  • PDF下载量:  15
  • 文章访问数:  1733
  • HTML全文浏览量:  311
文章相关
  • 收稿日期:  2020-04-24
  • 修回日期:  2020-05-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章