谷胱甘肽的宽频太赫兹光谱研究

郭聪 朱中杰 沈建雄 张宗昌 张建兵 赵德明 赵红卫

引用本文: 郭聪,  朱中杰,  沈建雄,  张宗昌,  张建兵,  赵德明,  赵红卫. 谷胱甘肽的宽频太赫兹光谱研究[J]. 分析化学, 2020, 48(10): 1367-1374. doi: 10.19756/j.issn.0253-3820.201148 shu
Citation:  GUO Cong,  ZHU Zhong-Jie,  SHEN Jian-Xiong,  ZHANG Zong-Chang,  ZHANG Jian-Bing,  ZHAO De-Ming,  ZHAO Hong-Wei. Broadband Terahertz Spectroscopy of Glutathione[J]. Chinese Journal of Analytical Chemistry, 2020, 48(10): 1367-1374. doi: 10.19756/j.issn.0253-3820.201148 shu

谷胱甘肽的宽频太赫兹光谱研究

  • 基金项目:

    本文系中国科学院微观界面物理与探测重点实验室项目和国防科技创新特区项目资助

摘要: 谷胱甘肽(Glutathione)的构型构象对其发挥生物学功能具有重要意义。本研究利用空气等离子体太赫兹时域光谱(THz-TDS)获得了还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)在0.5~12.0 THz波段的吸收光谱,结果表明,GSH在太赫兹波段有丰富的特征吸收峰,而GSSG呈现单调无特征的吸收曲线。粉末X射线衍射(PXRD)结果表明,GSH具有一定的晶型结构而GSSG为无定形态,提示太赫兹光谱对物质晶体结构有敏感响应。利用密度泛函理论(DFT)对GSH晶胞结构进行计算和太赫兹振动光谱分析,结果表明,GSH分子能形成丰富的氢键,这些氢键网络有助于约束柔性肽分子并使分子有序地堆叠形成晶体。晶格和氢键与太赫兹波作用产生共振吸收,GSH的太赫兹光谱中不同吸收峰对应分子不同集体振动或局域振动,并且与氢键的振动密切相关。本研究结果有助于加深GSH分子构型构象和分子弱相互作用的认识。

English


    1. [1]

      Chen J, Jiang X, Zhang C, MacKenzie K R. ACS Sens., 2017, 2(9):1257-1261

    2. [2]

      Fiser B, Szori M, Jojart B, Izsak R, Csizmadia I G. J. Phys.Chem.B, 2011, 115(38):11269-11277

    3. [3]

      Schulz J B, Lindenau J, Seyfried J. Eur. J. Biochem., 2000, 267(16):4904-4911

    4. [4]

      Arscott L D, Veine D M, Williams C H. Biochemistry, 2000, 39(16):4711-4721

    5. [5]

      Nasr R, Lorendeau D, Khonkarn R, Dury L, Pérès B, Boumendgel A, Cortay J C, Falson P, Chaptal V, Cortay B H. Sci. Rep., 2020, 10(1):7616

    6. [6]

      Liedgens L, Zimmermann J, Wäschenbach L, Geissel F, Laporte H, Gohlger H, Morgan B, Deponte M. Nat. Commun., 2020, 11(1):1-18

    7. [7]

      Fliser B, Jójárt B, Csizmadia I G, Viskolcz B. Plos One, 2013, 8(9):e73652

    8. [8]

      Florio G M, Zwier T S. J. Phys. Chem. A, 2003, 107(7):974-983

    9. [9]

      Ghosh A, Ostrander J S, Zanni M T. Chem. Rev., 2017, 117(16):10726-10759

    10. [10]

      Qian W, Krimm S. Biopolymers, 1994, 34(10):1377-1394

    11. [11]

      Yamamoto N, Ito S, Nakanishi M, Chatani E, Tominaga K. J. Phys.Chem.B, 2018, 122(4):1367-1377

    12. [12]

      YANG Yu-Ping, ZHANG Cheng, LIU Hai-Shun, ZHANG Zhen-Wei. Spectroscopy and Spectral Analysis, 2019, 39(1):45-49 杨玉平, 张成, 刘海顺, 张振伟. 光谱学与光谱分析, 2019, 39(1):45-49

    13. [13]

      Hand K, Yates E. J. R. Soc. Interface, 2017, 14(136):20170673

    14. [14]

      Neu J, Stone E A, Spies J A, Hatano A S, Mercado B Q, Miller S J, Schmuttenmaer C A. J. Am. Chem. Soc., 2019, 10(10):2624-2628

    15. [15]

      Bakels S, Gaigeot M P, Rijs A M. Chem. Rev., 2020, 120(7):3233-3260

    16. [16]

      Vinh N Q, Allen S J, Plaxco K W. J. Am. Chem. Soc., 2011, 133(23):8942-8947

    17. [17]

      Nibali V C, Morra G. J. Phys. Chem. B, 2017, 121(44):10200-10208

    18. [18]

      Yamamoto K, Kabir M H, Tominaga K. J. Opt. Soc. Am. B, 2005, 22(11):2417-2426

    19. [19]

      Rutz F, Wilk R, Grunenberg J, Koch M. Proceedings of SPIE, 2005, 5727:12-19

    20. [20]

      Wang W N, Yan H T, Yue W W, Zhao J Z, Zhang C L, Liu H B, Zhang X C. Sci. China Ser. G, 2005, 48(5):585-592

    21. [21]

      Gorbitz C H. Acta Chem. Scand. B, 1987, 18(49):362-366

    22. [22]

      Wright W B. Acta Cryst., 1958, 11(9):632-642

    23. [23]

      Moggach S A, Lennie A R, Morrison C A, Richardson P. CrystEngComm, 2010, 12(9):2587-2595

    24. [24]

      Hübschle C B, Ruhmlieb C, Burkhardt A, Smaalen S V, Dittrich B. Zeitschrift für Kristallographie-Crystalline Materials, 2018, 233(9-10):695-706

    25. [25]

      Zhu Z J, Chen C, Chang C, Ren G H, Zhang J B, Peng Y, Han J G, Zhao H W. Analyst, 2019, 144(8):2504-2510

    26. [26]

      Karpowicz N, Dai J M, Lu X F, Chen Y Q, Yamaguchi M, Zhao H W, Zhang X C, Zhang L L, Zhang C L, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Appl. Phys. Lett., 2008, 92(1):011131

    27. [27]

      Xie X, Dai J, Zhang X C. Phys. Rev. Lett., 2006, 96(7):075005

    28. [28]

      Dai Z, Xu X, Gu Y, Cheng X, Chen Z, Sun M. J. Chem. Phys., 2017, 146(12):124119

    29. [29]

      Walther M, Fischer B M, Uhd Jepsen P. Chem. Phys., 2003, 288(2-3):261-268

    30. [30]

      Petersson B, Nielsen B B, Rasmussen H, Gajhede M, Nile P E, kastrup J S. J. Am. Chem. Soc., 2005, 127(5):1424-1430

    31. [31]

      Vasudev P G, Shamala N, Balaram P. J. Phys.Chem. B, 2008, 112(4):1308-1314

    32. [32]

      Strachan C J, Rades T, Newnham D A, Cordon K C, Pepper M, Taday P T. Chem. Phys. Lett., 2004, 390(1-3):20-24

    33. [33]

      Siegrist K, Bucher C R, Pfefferkorn C, Schwarzkopf A, Plusquellic D F. New Approaches Biomed. Spectros.:ACS Symposium Series, 2007, 963(18):280-296

    34. [34]

      Day G M, Zeitler J A, Jones W, Rades W, Taday P T. J. Phys. Chem., 2006, 110(1):447-456

    35. [35]

      Karamertzanis P G, Price S L. J. Chem. Theory Comput., 2006, 2(4):1184-1199

    36. [36]

      Mooij W T M, Eijck B P, Kroon J. J. Am. Chem. Soc., 2000, 122(14):3500-3505

    37. [37]

      Liu Y, Goddard W A. J. Phys. Chem. Lett., 2010, 1(17):2550-2555

    38. [38]

      Plusquellic D F, Siegrit K, Heilweil E J, Esenturk O. Chemphyschem, 2007, 8(17):2412-2431

    39. [39]

      Sibik J, Elliott S R, Zeilter J A . Phys. Chem. Lett., 2014, 5(11):1968-1972

    40. [40]

      Zhang F, Hayashi M, Wang H W, Tominaga K, Kambara O, Nishizawa J, Sasaki T. J. Chem. Phys., 2014, 140(17):174509

    41. [41]

      Rungsawang R, Ueno Yuko, Tomita I, Ajito K. J. Phys. Chem. B, 2006, 110(42):21259-21263

    42. [42]

      Fu X, Wu H, Xi X, Zhou J. J. Phys. Chem. A, 2014, 118(2):333-338

    43. [43]

      Desiraju G R. Cryst. Growth Des., 2011, 11(4):896-898

    44. [44]

      Park E Y, Shimura N, Konishi T, Sauchi Y, Wada S, Aoi W. J. Agric. Food Chem., 2014, 62(26):6183-6189

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  26
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2020-03-21
  • 修回日期:  2020-07-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章