纳米金辅助低温等离子体常压质谱快速检测化学毒剂模拟剂

张琳 马明英 李宝强 孔景临 张四纯 张新荣

引用本文: 张琳,  马明英,  李宝强,  孔景临,  张四纯,  张新荣. 纳米金辅助低温等离子体常压质谱快速检测化学毒剂模拟剂[J]. 分析化学, 2020, 48(10): 1416-1421. doi: 10.19756/j.issn.0253-3820.201146 shu
Citation:  ZHANG Lin,  MA Ming-Ying,  LI Bao-Qiang,  KONG Jing-Lin,  ZHANG Si-Chun,  ZHANG Xin-Rong. Rapid Detection of Chemical Warfare Agent Simulants Using Gold Nanoparticles Substrate-assisted Enhanced Low Temperature Plasma-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(10): 1416-1421. doi: 10.19756/j.issn.0253-3820.201146 shu

纳米金辅助低温等离子体常压质谱快速检测化学毒剂模拟剂

摘要: 低温等离子体探针-质谱(LTP-MS)技术可快速检测气、液、固态样品,具有操作简单、快速准确、易小型化等特点,非常适于化学毒剂的现场快速检测。化学毒剂维埃克斯(VX)和芥子气(HD)的毒性强、沸点高、挥发性差,常以气溶胶或液滴态分散于地面、装备或衣服等表面,采用LTP-MS检测存在解吸附难和离子化效率较低的问题。本研究建立了一种纳米金(AuNPs)基底辅助LTP-MS快速检测方法,实现了土壤中VX模拟剂马拉硫磷和HD模拟剂2-氯乙基乙基硫醚(CEES)的快速检测。在氦气出口压力为0.12 MPa、交流电源功率为75 W等优化实验条件下,两种模拟剂的质谱信号强度均比无AuNPs辅助时提高7~9倍。两种模拟剂在5.0~1000 μg/g浓度范围内有良好的线性关系,相关系数(R2)分别为0.9784和0.9915,检出限分别为1.5和1.0 μg/g。本方法通过AuNPs基底与等离子体作用有效提高了难挥发固、液态化合物的离子化效率,具有快速、准确、灵敏的特点,在化学毒剂检测等领域有潜在的应用前景。

English


    1. [1]

      Zuo G M, Cheng Z X, Li G W, Shi W P, Miao T. Chem. Engineer. J., 2007, 128(2-3):135-140

    2. [2]

      Iwai T, Kakegawa K, Aida M, Nagashima H, Nagoya T, Kanamori-Kataoka M, Miyahara H, Seto Y, Okino A. Anal. Chem., 2015, 87(11):5707-5715

    3. [3]

      Schwenk M, Toxicol. Lett., 2018, (293):253-263

    4. [4]

      John H, Balszuweit F, Kehe K, Worek F, Thiermann H. Handbook of Toxicology of Chemical Warfare Agents, San Diego:Elsevier Academic Press Inc, 2009:755-790

    5. [5]

      Jung H, Lee H W. J. Hazard. Mater., 2014, (273):78-84

    6. [6]

      Tang F R, Loke W K. Crit. Rev. Toxicol., 2012, 42(8):688-702

    7. [7]

      Witkiewicz Z, Neffe S, Sliwka, Quagliano J. Crit. Rev. Anal. Chem., 2018, 48(5):337-371

    8. [8]

      Zelder F H. Inorg. Chem., 2008, 47(4):1264-1266

    9. [9]

      Makinen M A, Anttalainen O A, Sillanpaa M E T. Anal. Chem., 2010, 82(23):9594-9600

    10. [10]

      Puton J, Namiesnik J. TrAC-Trends Anal. Chem., 2016, 85:10-20

    11. [11]

      Harris G A, Falcone C E, Fernandez F M. J. Am. Soc. Mass Spectrom., 2012, 23(1):153-161

    12. [12]

      Snyder D T, Pulliam C J, Ouyang Z, Cooks R G. Anal. Chem., 2016, 88(1):2-29

    13. [13]

      Savel'eva E I, Gustyleva L K, Orlova O I, Khlebnikova N S, Koryagina N L, Radilov A S. Russian J. Appl. Chem., 2014, 87(8):1003-1012

    14. [14]

      Brkic B, France N, Taylor S. Anal. Chem., 2011, 83(16):6230-6236

    15. [15]

      Krebs M D, Zapata A M, Nazarov E G, Miller R A, Costa I S, Sonenshein A L, Davis C E. IEEE Sens. J., 2005, 5(4):696-703

    16. [16]

      Wiley J S, Shelley J T, Cooks R G. Anal. Chem., 2013, 85(14):6545-6552

    17. [17]

      Dumlao M C, Jeffress L E, Gooding J J, Donald W A. Analyst, 2016, 141(12):3714-3721

    18. [18]

      Wolf J C, Etter R, Schaer M, Siegenthaler P, Zenobi R. J. Am. Soc. Mass Spectrom., 2016, 27(7):1197-2202

    19. [19]

      Huang G, Xu W,Visbal-Onufrak M A, Ouyang Z, Cooks R G. Analyst, 2010, 135(4):705-711

    20. [20]

      GUO Xiang-Yu, HUANG Xue-Mei, ZHAI Jun-Feng, BAI Hua, LI Xiao-Xu, MA Xiao-Xiao, MA Qiang. Chinese J. Anal. Chem., 2019, 47(3):335-346 郭项雨, 黄雪梅, 翟俊峰, 白桦, 李晓旭, 马潇潇, 马强. 分析化学, 2019, 47(3):335-346

    21. [21]

      Wolf J C, Schaer M, Siegenthaler P, Zenobi R. Anal. Chem., 2015, 87(1):723-729

    22. [22]

      Budzynska E, Grabka M, Kopyra J, Maziejuk M, Safaei Z, Fliszkiewicz B, Wisnik M, Puton J. Talanta, 2019, 194:259-265

    23. [23]

      Zhang L, Zhao X, Cheng H Y, Kong J L, Zhao Y Y, Zhu X W, Zhang S C, Zhang X R. Talanta, 2018, 190:403-409

    24. [24]

      Albert A, Engelhard C. Anal. Chem., 2012, 84(24):10657-10664

    25. [25]

      Harris G A, Galhena A S, Fernandez F M. Anal. Chem., 2011, 83(12):4508-4538

    26. [26]

      Ma X X, Zhang S C, Zhang X R. TrAC-Trends Anal. Chem., 2012, 84(35):50-66

    27. [27]

      Pakiari A H, Jamshidi Z. J. Phys. Chem. A, 2010, 114(34):9212-9221

    28. [28]

      Hook G L, Kimm G, Koch D, Savage P B, Ding B, Simith P A. J. Chromatogr. A, 2003, 992(1-2):1-9

    29. [29]

      Higdon N S,Chyba T H, Richer D A, Ponsardin P L, Armstrong W T, Lobb C T, Kelly B T, Babnick R D. Proc. SPIE, 2002, 4722):50-59

    30. [30]

      G/SPS/N/CAN/1278(2019) Proposed Maximum Residue Limit:Malathion (PMRL2019-30)

  • 加载中
计量
  • PDF下载量:  11
  • 文章访问数:  1759
  • HTML全文浏览量:  171
文章相关
  • 收稿日期:  2020-03-21
  • 修回日期:  2020-06-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章