蛋白质的核酸适配体筛选及应用的研究进展

赵丽萍 杨歌 张小敏 屈锋

引用本文: 赵丽萍,  杨歌,  张小敏,  屈锋. 蛋白质的核酸适配体筛选及应用的研究进展[J]. 分析化学, 2020, 48(5): 560-572. doi: 10.19756/j.issn.0253-3820.201024 shu
Citation:  ZHAO Li-Ping,  YANG Ge,  ZHANG Xiao-Min,  QU Feng. Development of Apatmer Screening Against Proteins and Its Applications[J]. Chinese Journal of Analytical Chemistry, 2020, 48(5): 560-572. doi: 10.19756/j.issn.0253-3820.201024 shu

蛋白质的核酸适配体筛选及应用的研究进展

  • 基金项目:

    本文系国家自然科学基金项目(Nos.21675012,21874010,21827810)资助

摘要: 核酸适配体是通过指数富集配体系统进化(SELEX)筛选方法获得的,能够与靶标分子高亲和力和特异性结合的单链DNA或RNA。蛋白质是一种非常重要的生物功能大分子,迄今为止,已经开发了许多SELEX技术,用于蛋白质的适配体的筛选。目前,适配体的筛选优化方法主要集中在提高筛选效率、降低筛选成本,以及提升适配体性能等方面,从而获得可与靶标分子以高亲和力和高特异性结合的适配体。适配体与靶标分子亲和力的表征是关键的筛选步骤,用于判定所筛选的适配体是否可以满足后续应用需求。本文归纳总结了2016年以来蛋白质靶标的适配体筛选的研究进展,对核酸适配体筛选过程中有关核酸库的优化方法和筛选方法的改进、新筛选方法的开发、核酸适配体的应用等方面的研究进行了评述。

English


    1. [1]

      Tuerk C, Gold L. Science,1990,249 (4968):505-510

    2. [2]

      Ellington A D, Szostak, J W. Nature,1990,346:818-822

    3. [3]

      Bock L C, Griffin L C, Latham J A, Vermaas E H, Toole J J. Nature,1992,355:564-566

    4. [4]

      YANG Ge, WEI Qiang, ZHAO Xin-Ying, QU Feng. Chinese Journal of Chromatography,2016,34(4):370-381 杨 歌, 魏 强, 赵新颖, 屈 锋.色谱,2016,34(4):370-381

    5. [5]

      Gilbert W. Nature,1986,319:618

    6. [6]

      Wang T, Chen C, Larcher L M, Barrero R A, Veedu R N. Biotechnol. Adv.,2019,37(1):28-50

    7. [7]

      McKeague M, DeRosa M C. J. Nucleic Acids,2012:748913

    8. [8]

      Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. Biochimie,2018,154:132-155

    9. [9]

      Blind M, Blank M. Mol. Ther. Nucleic Acids,2015,4:e223

    10. [10]

      Knight R, Yarus M. Nucleic Acids Res.,2003,31(6):e30

    11. [11]

      Velez T E, Singh J, Xiao Y, Allen E C, Wong O Y, Chandra M, Kwon S C, Silverman S K. ACS Comb. Sci.,2012,(14):680-687

    12. [12]

      Kwon Y S, Raston N H A, Gu M B. Chem. Commun.,2014,(50):40-42

    13. [13]

      Li Y F, Geyer C R, Sen D. Biochemistry,1996,(35):6911-6922

    14. [14]

      Lee K H, Zeng H. Anal. Bioanal. Chem.,2017,409(21):5081-5089

    15. [15]

      He X, Guo L, He J, Xu H, Xie J. Anal. Chem.,2017,89(12):6559-6566

    16. [16]

      Griffin L C, Tidmarsh G F, Bock L C, Toole J J, Leung L L K. Blood,1993,81(12):3271-3276

    17. [17]

      Pagratis N C, Bell C, Chang Y F, Jennings S, Fitzwater T, Jellinek D, Dang C. Nat. Biotechnol.,1997,15(1):68-73

    18. [18]

      Matsunaga K, Kimoto M, Hanson C, Sanford M, Young H A, Hirao I. Sci. Rep.,2015,5:18478

    19. [19]

      Shoara A A, Reinstein O, Borhani O A, Martin T R, Slavkovic S, Churcher Z R, Johnson P E. Biochimie,2018,145:137-144

    20. [20]

      Dunn M R, Jimenez R M, Chaput J C. Nat. Rev. Chem.,2017,1(10):0076

    21. [21]

      Zhou J H, Rossi J. Nat. Rev. Drug Discov.,2017,16(3):181-202

    22. [22]

      Hollenstein M, Hipolito C J, Lam C H, Perrin D M. Nucleic Acids Res.,2009,37(5):1638-1649

    23. [23]

      Davydova A, Vorobyeva M, Bashmakova E, Vorobjev P, Krasheninina O, Tupikin A, Venyaminova A. Anal. Biochem.,2019,570:43-50

    24. [24]

      Liu M, Yin Q, Brennan J D, Li Y. Biochimie,2018,145:151-157

    25. [25]

      Aldag J, Persson T, Hartmann R. Int. J. Mol. Sci.,2018,19(12):3883-3398

    26. [26]

      Kratschmer C, Levy M. Nucleic Acid Ther.,2017,27(6):335-344

    27. [27]

      Röthlisberger P, Hollenstein M. Adv. Drug Delivery Rev.,2018,134:3-21

    28. [28]

      Levi-Acobas F, Katolik A, Röthlisberger P, Cokelaer T, Sarac I, Damha M J, Hollenstein M. Org. Biomol. Chem.,2019,17(35):8083-8087

    29. [29]

      Kamatkar N, Levy M, Hébert J M. Mol. Ther. Nucleic Acids,2019,17:530-539

    30. [30]

      Kimoto M, Nakamura M, Hirao I. Nucleic Acids Res.,2016,44(15):7487-7494

    31. [31]

      Wang H, Lam C H, Li X, West D L, Yang X. Biochimie,2018,145:125-130

    32. [32]

      Gawande B N, Rohloff J C, Carter J D, von Carlowitz I, Zhang C, Schneider D J, Janjic N. Proc. Natl. Acad. Sci. USA,2017,114(11):2898-2903

    33. [33]

      Chen T J, Hongdilokkul N, Liu Z X, Adhikary R, Tsuen S S, Romesberg F E. Nat. Chem.,2016,8(6):557-563

    34. [34]

      Thirunavukarasu D, Chen T J, Liu Z X, Hongdilokkul N, Romesberg F E. J. Am. Chem. Soc.,2017,139(8):2892-2895

    35. [35]

      Liu Z X, Chen T J, Romesberg F E. Chem. Sci.,2017,8(12):8179-8182

    36. [36]

      Chen T J, Romesberg F E. Angew. Chem. Int. Edit.,2017,56(45):14046-14051

    37. [37]

      Taylor A I, Pinheiro V B, Smola M J, Morgunov A S, Peak-Chew S, Cozens C, Weeks K M, Herdewijn P, Holliger P. Nature,2015,518(7539):427-430

    38. [38]

      Larsen A C, Dunn M R, Hatch A, Sau S P, Youngbull C, Chaput J C. Nat. Commun.,2016,7:11235

    39. [39]

      Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I. Nat. Biotechnol.,2013,31:453-457

    40. [40]

      Matsunaga K, Kimoto M, Hirao I. J. Am. Chem. Soc.,2017,139(1):324-334

    41. [41]

      Zhang L Q, Yang Z Y, Trinh T L, Teng I T, Wang S, Bradley K M, Hoshika S, Wu Q F, Cansiz S, Rowold D J, McLendon C, Kim M S, Wu Y, Cui C, Liu Y, Hou W J, Stewart K, Wan S, Liu C, Benner S A, Tan W H. Angew. Chem. Int. Edit.,2016,55(40):12372-12375

    42. [42]

      Golden M C, Collins B D, Willis M C, Koch T H. J. Biotechnol.,2000,81(2-3):167-178

    43. [43]

      Maasch C, Buchner K, Eulberg D, Vonhoff S, Klussmann S. Nucleic Acids Symp. Ser.,2008:61-62

    44. [44]

      Wang Z M, Xu W L, Liu L, Zhu T F. Nat. Chem.,2016,8(7):698-704

    45. [45]

      Pech A, Achenbach J, Jahnz M, Schulzchen S, Jarosch F, Bordusa F, Klussmann S. Nucleic Acids Res.,2017,45(7):3997-4005

    46. [46]

      Vater A, Klussmann S. Curr. Opin. Drug Discov. Devel.,2003,6(2):253-261

    47. [47]

      Kanwar J R, Roy K, Kanwar R K. Crit. Rev. Biochem. Mol. Biol.,2011,46(6):459-477

    48. [48]

      Yang D K, Chou C F, Chen L C. RSC Adv.,2018,8(34):19067-19074

    49. [49]

      Tsao S M, Lai J C, Horng H E, Liu T C, Hong C Y. Sci. Rep.,2017,7:45478

    50. [50]

      Sypabekova M, Bekmurzayeva A, Wang R, Li Y, Nogues C, Kanayeva D. Tuberculosis,2017,104:70-78

    51. [51]

      Rose K M, Ferreira-Bravo I A, Li M, Craigie R, Ditzler M A, Holliger P, DeStefano J J. ACS Chem. Biol.,2019,14(10):2166-2175

    52. [52]

      Yang C, Wang Y, Ge M H, Fu Y J, Hao R, Islam K, Naranmandura H. Biomater. Sci.,2019,7(3):938-950

    53. [53]

      Shubham S, Hoinka J, Banerjee S, Swanson E, Dillard J A, Lennemann N J, Przytycka T M, Maury W, Nilsen-Hamilton M. Sci. Rep.,2018,8:12373

    54. [54]

      Li K, Xiu C L, Gao L M, Shi M, Zhai Y. J. South Med. Univ.,2016,36(12):1592-1598

    55. [55]

      Alshaer W, Ababneh N, Hatmal M, Izmirli H, Choukeife M, Shraim A, Awidi A. PloS one,2017,12(12):189558-189571

    56. [56]

      Donkor D A, Bhakta V, Eltringham-Smith L J, Stafford A R, Weitz J I, Sheffield W P. Sci. Rep.,2017,7:2102

    57. [57]

      Yazdian-Robati R, Ramezani M, Khedri M, Ansari N, Abnous K, Taghdisi S M. Microchim. Acta,2017,184(10):4029-4035

    58. [58]

      Leblebici P, Leirs K, Spasic D, Lammertyn J. Anal. Chim. Acta,2019,1053:70-80

    59. [59]

      Zhou W, Zhang Y, Zeng Y, Peng M, Li H, Sun S, Liu J. Biochimie,2018,151:150-158

    60. [60]

      Fukasawa K, Higashimoto Y, Ando Y, Motomiya Y. Ther. Apher. Dial.,2018,22(1):61-66

    61. [61]

      Hu Y, Li X, An Y, Duan J, Yang X D. Oncotarget,2018,9(42):26605-26616

    62. [62]

      Nazari M, Gargari S, L M, Sahebghadam Lotfi A, Rassaee M J, Taheri R A. Biochemistry,2019,58(18):2373-2383

    63. [63]

      Alshaer W, Ababneh N, Hatmal M, Izmirli H, Choukeife M, Shraim A, Awidi A. PloS One,2017,12(12):e0189558

    64. [64]

      Bhardwaj J, Chaudhary N, Kim H, Jang J. Anal. Chim. Acta,2019,1064:94-103

    65. [65]

      Díaz-Fernández A, Miranda-Castro R, de-los-Santos-Álvarez N, Rodríguez E F, Lobo-Castañón M J. Biosens. Bioelectron.,2019,128:83-90

    66. [66]

      Yu F, Li H, Sun W, Zhao Y, Xu D, He F. Talanta,2019,193:110-117

    67. [67]

      Ma Y, Li X, Li W, Liu Z. ACS Appl. Mater. Interfaces,2018,10(47):40918-40926

    68. [68]

      Liu M, Yin Q, Chang Y, Zhang Q, Brennan J D, Li Y. Angew. Chem. Int. Edit.,2019,58(24):8013-8017

    69. [69]

      Tucker W, Kinghorn A, Fraser L, Cheung Y W, Tanner J. Int. J. Mol. Sci.,2018,19(3):763-778

    70. [70]

      Wang C, Du X, Xie T, Li H. J. Sep. Sci.,2019,42(23):3571-3578

    71. [71]

      Sedighian H, Halabian R, Amani J, Heiat M, Taheri R A, Fooladi A A I. Anal. Biochem.,2018,548:69-77

    72. [72]

      Bayat P, Taghdisi S M, Rafatpanah H, Abnous K, Ramezani M. Talanta,2019,194:399-405

    73. [73]

      Sedighian H, Halabian R, Amani J, Heiat M, Amin M, Fooladi A A I. J. Biotech.,2018,286:45-55

    74. [74]

      Moreno M, Fernández-Algar M, Fernández-Chamorro J, Ramajo J, Martínez-Salas E, Briones C. Molecules,2019,24(7):1213-1229

    75. [75]

      Eissa S, Zourob M. Biosens. Bioelectron.,2017,91:169-174

    76. [76]

      Heiat M, Ranjbar R, Latifi A M, Rasaee M J. Peptides,2016,82:101-108

    77. [77]

      Chonco L, Fernández G, Kalhapure R, Hernáiz M J, Garcia-Oliva C, Gonzalez V M, Parboosing R. Nucleic Acid Ther.,2018,28(4):242-251[LM]

    78. [78]

      Stuart C H, Riley K R, Boyacioglu O, Herpai D M, Debinski W, Qasem S, Gmeiner W H. Mol. Ther. Nucl. Acids,2016,5:386-395

    79. [79]

      Zhu C, Wang X, Li L, Hao C, Hu Y, Rizvi A S, Qu F. Biochem. Biophys. Res. Commun.,2018,506(1):169-175

    80. [80]

      Lisi S, Fiore E, Scarano S, Pascale E, Boehman Y, Duconge F, Ravelet C. Anal. Chim. Acta,2018,1038:173-181

    81. [81]

      Zhu C, Li L, Yang G, Fang S, Liu M, Ghulam M, Qu F. Anal. Chim. Acta,2019,1070:112-122

    82. [82]

      Zhu C, Li L, Yang G, Irfan M, Wang Z, Fang S, Qu F. Talanta,2019,205:120088

    83. [83]

      Wakui K, Yoshitomi T, Yamaguchi A, Tsuchida M, Saito S, Shibukawa M, Yoshimoto K. Mol. Ther. Nucl. Acids,2019,16:348-359

    84. [84]

      Wakui K, Abe A, Yoshitomi T, Furusho H, Yoshimoto K. Anal. Sci.,2019,35(5):585-588

    85. [85]

      Le A T, Krylova S M, Kanoatov M, Desai S, Krylov S N. Angew. Chem. Int. Edit.,2018,58(9):2739-2743

    86. [86]

      Yang G, Feng Q, Abstract. BCEIA,2017

    87. [87]

      Sinha A, Gopinathan P, Chung Y D, Lin H Y, Li, K H, Ma H P, Lee G B. Biosens. Bioelectron.,2018,122:104-112

    88. [88]

      Liu X, Li H, Jia W, Chen Z, Xu D. Lab Chip,2017,17(1):178-185

    89. [89]

      Park J W, Lee S J, Ren S, Lee S, Kim S, Laurell T. Sci. Rep.,2016,6:27121

    90. [90]

      Olsen T R, Tapia-Alveal C, Yang K A, Zhang X, Pereira L J, Farmakidis N, Lin Q. J. Electrochem. Soc.,2017,164(5):B3122-B3129

    91. [91]

      Kim J, Olsen T R, Zhu J, Hilton J P, Yang K A, Pei R, Lin Q. Sci. Rep.,2016,6:26139

    92. [92]

      Hong S L, Wan Y T, Tang M, Pang D W, Zhang Z L. Anal. Chem.,2017,89(12):6535-6542

    93. [93]

      Olsen T, Zhu J, Kim J, Pei R, Stojanovic M N, Lin Q. SLAS Technol.,2017,22(1):63-72

    94. [94]

      Kinghorn A B, Dirkzwager R M, Liang S, Cheung Y W, Fraser L A, Shiu S C C, Tanner J A. Anal. Chem.,2016,88(14):6981-6985|

    95. [95]

      Yokoyama T, Tsukakoshi K, Yoshida W, Saito T, Teramoto K, Savory N, Ikebukuro K. Biotech. Bioengeer.,2017,114(10):2196-2203

    96. [96]

      Ahirwar R, Nahar S, Aggarwal S, Ramachandran S, Maiti S, Nahar P. Sci. Rep.,2016,6:21285

    97. [97]

      Bavi R, Liu Z, Han Z, Zhang H, Gu Y. Biochem. Biophys. Res. Commun.,2019,509(4):937-942

    98. [98]

      Haghighi M, Khanahmad H, Palizban A. Molecules,2018,23(4):715-728

    99. [99]

      Fafińska J, Czech A, Sitz T, Ignatova Z, Hahn U. Nucleic Acid Ther.,2018,28(6):326-334

    100. [100]

      Takenaka M, Okumura Y, Amino T, Miyachi Y, Ogino C, Kondo A. Bioorg. Med. Chem. Lett.,2017,27(4):954-957

    101. [101]

      Nafissi-varcheh N, Kazemi B, Aboofazeli R, Shahhosseini S, Tabarzad M. Iran. J. Pharm. Res.,2017,16(2):734-741

    102. [102]

      Zhu C, Yang G, Ghulam M, Li L, Qu F. Biotechnol. Adv.,2019:107432

    103. [103]

      Lenshof A, Laurell T. Chem. Soc. Rev.,2010,39(3):1203-1217

    104. [104]

      Pappas D, Wang K. Anal. Chim. Acta,2007,601(1):26-35

    105. [105]

      Hybarger G, Bynum J, Williams R F. Anal. Bioanal. Chem.,2005,384(1):191-198

    106. [106]

      Cho M, Xiao Y, Nie J, Stewart R, Csordas A T, Oh S S, Soh H T. Proc. Natl. Acad. Sci. USA,2010,107(35):15373-15378

    107. [107]

      Bae H, Ren S, Kang J, Kim M, Jiang Y, Jin M M, Kim S. Nucleic Acid Ther.,2013,23(6):443-449

    108. [108]

      Qian J, Lou X, Zhang Y, Xiao Y, Soh H T. Anal. Chem.,2009,81(13):5490-5495

    109. [109]

      Jiang Y, Zhu C, Ling L, Wan L, Fang X, Bai C. Anal. Chem.,2003,75(9):2112-2116

    110. [110]

      Allison D P, Hinterdorfer P, Han W. Curr. Opin. Biotech.,2002,13(1):47-51

    111. [111]

      Zlatanova J, Lindsay S M, Leuba S H. Prog. Biophys. Mol. Biol.,2000,74(1-2):37-61

    112. [112]

      Miyachi Y, Shimizu N, Ogino C, Kondo A. Nucleic Acids Res.,2009,38(4):21-21

    113. [113]

      Ye M, Hu J, Peng M, Liu J, Liu J, Liu H, Tan W. Int. J. Mol. Sci.,2012,13(3):3341-3353

    114. [114]

      Liu Y, Kuan C T, Mi J, Zhang X, Clary B M, Bigner D D, Sullenger B A. Biol. Chem.,2009,390(2):137-144

    115. [115]

      Sefah K, Shangguan D, Xiong X, O'donoghue M B, Tan W. Nat. Protoc.,2010,5(6):1169-1185

    116. [116]

      Blank M, Weinschenk T, Priemer M, Schluesener H. J. Biol. Chem.,2001,276(11):16464-16468

    117. [117]

      Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Tan W. J. Proteome Res.,2008,7(5):2133-2139

    118. [118]

      Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W. Mol. Cell. Proteomics,2007,6(12):2230-2238

    119. [119]

      He J, Wang J, Zhang N, Shen L, Wang L, Xiao X, Shangguan D. Talanta,2019,194:437-445

    120. [120]

      Bing T, Shen L, Wang J, Wang L, Liu X, Zhang N, Xiao X, Shangguan D. Adv. Sci.,2019,6(11):1900143

    121. [121]

      Chen L, He W, Jiang H, Wu L, Xiong W, Li B, Zhou Z, Qian Y. Int. J. Nanomed.,2019,14:149-159

    122. [122]

      Fernández G, Moraga A, Cuartero M I, García-Culebras A, Peña-Martínez C, Pradillo J M, Hernández-Jiménez M, Sacristán S, Ayuso M I, Gonzalo-Gobernado R. Mol. Ther.,2018,26:2047-2059

    123. [123]

      Mai J, Li X, Zhang G, Huang Y, Xu R, Shen Q, Lokesh G L, Thiviyanathan V, Chen L, Liu H. Mol. Pharm.,2018,15:1814-1825

    124. [124]

      Zhang S, Kumar K, Jiang X, Wallqvist A, Reifman J. BMC Bioinformatics,2008,9(1):126

    125. [125]

      Ma H, Liu J, Ali M M, Mahmood M A I, Labanieh L, Lu M, Wan Y. Chem. Soc. Rev.,2015,44(5):1240-1256

    126. [126]

      Zhou L, Ji F, Zhang T, Wang F, Li Y, Yu Z, Ruan B. Talanta,2019,197:444-450

    127. [127]

      Opazo F, Levy M, Byrom M, Schäfer C, Geisler C, Groemer T W, Rizzoli S O. Nat. Methods,2012,9(10):938-939

    128. [128]

      HUANG Zi-Ke, LIU Chao, FU Qiang-Qiang, LI Jin, ZOU Jian-Mei, XIE Si-Tao, QIU Li-Ping. Chinese J. Appl. Chem.,2018,35(1):28-39 黄子珂, 刘 超, 付强强, 李 进, 邹建梅, 谢斯滔, 邱丽萍.应用化学,2018,35(1):28-39

    129. [129]

      Hwang S Y, Sun H Y, Lee K H, Oh B H, Cha Y J, Kim B H, Yoo J Y. Nucleic Acids Res.,2012,40:2724-2733

    130. [130]

      Zhang Y, Lai B S, Juhas M. Molecules,2019,24(5):941-963

    131. [131]

      Mufhandu H T, Gray E S, Madiga M C, Tumba N, Alexandre K B, Khoza T, Wibmer C K, Moore P L, Morris L, Khati M. J. Virol.,2012,86:4989-4999

    132. [132]

      Kunii T, Ogura S I, Mie M, Kobatake E. Analyst,2011,136:1310-1312

    133. [133]

      Berezovski M V, Lechmann M, Musheev M U, Mak T W, Krylov S N. J. Am. Chem. Soc.,2008,130(28):9137-9143

    134. [134]

      Jia W, Ren C, Wang L, Zhu B, Jia W, Gao M, Zeng F, Zeng L, Xia X, Zhang X, Fu T, Li S, Du C, Jiang X, Chen Y, Tan W, Zhao Z, Liu W. Oncotarget,2016,7:55328-55342

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  699
  • HTML全文浏览量:  82
文章相关
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-02-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章