基于微流控芯片的核酸适配体筛选技术研究进展

姜浩 吕雪飞 赵可心

引用本文: 姜浩,  吕雪飞,  赵可心. 基于微流控芯片的核酸适配体筛选技术研究进展[J]. 分析化学, 2020, 48(5): 590-600,684. doi: 10.19756/j.issn.0253-3820.191775 shu
Citation:  JIANG Hao,  LYU Xue-Fei,  ZHAO Ke-Xin. Progress of Aptamer Screening Techniques Based on Microfluidic Chips[J]. Chinese Journal of Analytical Chemistry, 2020, 48(5): 590-600,684. doi: 10.19756/j.issn.0253-3820.191775 shu

基于微流控芯片的核酸适配体筛选技术研究进展

摘要: 适配体(Aptamer)是通过指数富集的配体系统进化技术(SELEX)筛选得到的,可与靶标分子以高亲和力特异性结合的单链DNA或RNA,在生物分离分析、临床诊断和疾病靶向治疗等领域应用广泛。适配体的发展与筛选技术的进步密切相关,以SELEX为基础,研究者开发了磁珠SELEX和毛细管电泳SELEX等多种适配体体外筛选技术,但这些方法存在筛选轮次多、筛选周期长和样品消耗量大、对小分子筛选效率低等缺点。微流控芯片具有体积小、高通量和易集成等特点,基于微流控芯片的SELEX技术在一定程度上可解决上述问题,实现适配体快速、高通量的体外筛选。本文在总结SELEX及其关键技术要点的基础上,重点评述了基于微流控和微阵列芯片SELEX技术的研究进展,并对SELEX技术中未来的发展方向进行了总结和展望。

English


    1. [1]

      Li J, Fu H E, Wu L J, Zheng A X, Yang H H. Anal. Chem.,2012,84(12): 5309-5315

    2. [2]

      Jiang B, Li F, Yang C, Xie J, Xiang Y, Yuan R. Anal. Chem.,2015,87(5): 3094-3098

    3. [3]

      Leung K H, He B Y, Yang C, Leung C H, Wang H M D, Ma D L. ACS Appl. Mater. Interfaces,2015,7(43): 24046-24052

    4. [4]

      Ellington A D, Szostak J W. Nature,1990,346(6287): 818-822

    5. [5]

      Tuerk C, Gold L. Science,1990,249(4968): 505-510

    6. [6]

      Wang C, Liu B, Lu J, Zhang G, Lu A. J. Nanosci. Nanotechnol., 2014,14(1): 501-512

    7. [7]

      Ilgu M, Nilsen-Hamilton M. Analyst,2016,141(5): 1551-1568

    8. [8]

      Zhou J, Rossi J. Nat. Rev. Drug Discov.,2017,16(3): 181-202

    9. [9]

      Chang A L, McKeague M, Liang J C, Smolke C D. Anal. Chem., 2014,86(7): 3273-3278

    10. [10]

      Ozer A, Pagano J M, Lis J T. Mol. Ther-Nucl. Acids, 2014,3(8): 183-200

    11. [11]

      Zhu C, Wang X, Li L, Hao C, Hu Y, Rizvi A S, Qu F. Biochem. Biophys. Res. Commun.,2018,506(1): 169-175

    12. [12]

      Sanchez J A, Pierce K E, Rice J E, Wangh L J. Proc. Natl. Acad. Sci. USA,2004,101(7): 1933-1938

    13. [13]

      Avci-Adali M, Paul A, Wilhelm N, Ziemer G, Wendel H P. Molecules,2010,15(1): 1-11

    14. [14]

      Costa G, Leamon J, Rothberg J, Weiner M. U.S. Patent Application. No.10/767, 894.2004

    15. [15]

      Xiao P, Lv X, Wang S, Iqbal J, Qing H, Li Q, Deng Y. Anal. Biochem., 2013,441(2): 123-132

    16. [16]

      Zhang J, Lv X F, Feng W, Li X Q, Li K J, Deng Y L. Microchim. Acta,2018,185(8): 364-371

    17. [17]

      Wang J, Rudzinski J F, Gong Q, Soh H T, Atzberger P J. PLoS One,2012,7(8): e43940

    18. [18]

      Hünniger T, Wessels H, Fischer C, Paschke-Kratzin A, Fischer M. Anal. Chem., 2014,86(21): 10940-10947

    19. [19]

      Han B, Zhao C, Yin J, Wang H. J. Chromatogr. B, 2012,903: 112-117

    20. [20]

      Zhu C, Yang G, Ghulam M, Li L S, Qu F. Biotechnol. Adv., 2019,37(8): 9734-9750

    21. [21]

      Li Q, Zhao X, Liu H, Qu F. J. Chromatogr. A,2014,1364: 289-294

    22. [22]

      Luo Z, Zhou H, Jiang H, Ou H, Li X, Zhang L. Analyst,2015,140(8): 2664-2670

    23. [23]

      Manz A, Fettinger J C, Verpoorte E, Lüdi H, Widmer H, Harrison D J. TrAC-Trend. Anal. Chem., 1991,10(5): 144-149

    24. [24]

      Li R, Zhang X, Lv X, Geng L, Li Y, Qin K, Deng Y. Anal. Biochem., 2017,539: 48-53

    25. [25]

      Qin K, Lv X, Xing Q, Li R, Deng Y. Anal. Methods,2016,8(12): 2584-2591

    26. [26]

      Xu J, Lv X, Wei Y, Zhang L, Li R, Deng Y, Xu X. Sens. Actuators B,2015,212: 472-480

    27. [27]

      Zhang C, Lv X, Yasmeen S, Qing H, Deng Y. Anal. Methods,2017,9(24): 3619-3625

    28. [28]

      Yu L, Li X, Hu X, Yu S, Lv X, Li Q, Deng Y. 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI),2015:328-332

    29. [29]

      Li J L, Chang K W, Wang C H, Yang C H, Shiesh S C, Lee G B. Biosens. Bioelectron., 2016,79: 887-893

    30. [30]

      Xu Y, Yang X, Wang E. Anal. Chim. Acta,2010,683(1): 12-20

    31. [31]

      Lou X, Qian J, Xiao Y, Viel L, Gerdon A E, Lagally E T, Atzberger P, Tarasow T M, Heeger A J, Soh H T. Proc. Natl. Acad. Sci. USA,2009,106(9): 2989-2994

    32. [32]

      SOh S, Ahmad K M, Cho M, Kim S, Xiao Y, Soh H T. Anal. Chem., 2011,83(17): 6883-6889

    33. [33]

      Qian J, Lou X, Zhang Y, Xiao Y, Soh H T. Anal. Chem., 2009,81(13): 5490-5495

    34. [34]

      Huang C J, Lin H I, Shiesh S C, Lee G B. Biosens. Bioelectron., 2010,25(7): 1761-1766

    35. [35]

      Ahmad K M, Oh S S, Kim S, McClellen F M, Xiao Y, Soh H T. PloS One,2011,6(11): e27051

    36. [36]

      Bock L C, Griffin L C, Latham J A, Vermaas E H, Toole J J. Nature,1992,355(6360): 564-566

    37. [37]

      Green L S, Jellinek D, Jenison R, Östman A, Heldin C H, Janjic N. Biochemistry-US, 1996,35(45): 14413-14424

    38. [38]

      Stoltenburg R, Reinemann C, Strehlitz B. Biomol. Eng., 2007,24(4): 381-403

    39. [39]

      Gill I. Chem. Mater., 2001,13(10): 3404-3421

    40. [40]

      Livage J, Coradin T, Roux C. J. Phys.Condens.Mat.,2001,13(33): R673-R691

    41. [41]

      Pastor I, Ferrer M L, Lillo M P, Gómez J, Mateo C R. J. Phys. Chem. B,2007,111(39): 11603-11610

    42. [42]

      Kim Y Y, Chae S Y, Kim S, Byun Y, Bae Y H. J. Biomater. Sci. Polym. Edit.,2005,16(12): 1521-1535

    43. [43]

      Besanger T R, Easwaramoorthy B, Brennan J D. Anal. Chem., 2004,76(21): 6470-6475

    44. [44]

      Cho E J, Bright F V. Anal. Chem., 2002,74(6): 1462-1466

    45. [45]

      Rupcich N, Goldstein A, Brennan J D. Chem. Mater., 2003,15(9): 1803-1811

    46. [46]

      Ahn J Y, Jo M, Dua P, Lee D K, Kim S. Oligonucleotides,2011,21(2): 93-100

    47. [47]

      Bae H, Ren S, Kang J, Kim M, Jiang Y, Jin M M, Min I M, Kim S. Nucleic Acid Ther.,2013, 23(6): 443-449

    48. [48]

      Huang C J, Lin H I, Shiesh S C, Lee G B. Biosens. Bioelectron., 2012,35(1): 50-55

    49. [49]

      Hughes T R, Mao M, Jones A R, Burchard J, Marton M J, Shannon K W, Lefkowitz S M, Ziman M, Schelter J M, Meyer M R. Nat. Biotechnol., 2001,19(4): 342-347

    50. [50]

      Okamoto T, Suzuki T, Yamamoto N. Nat. Biotechnol., 2000,18(4): 438-441

    51. [51]

      Jain K. Science,2001, 294(5542): 621-623

    52. [52]

      Albala J S. Expert Rev.Mol.Diagn.,2001,1(2): 145-152

    53. [53]

      Butun S, Sahiner N. Polymer,2011,52(21): 4834-4840

    54. [54]

      Zhu Q, Trau D. Anal. Chim. Acta,2012,751: 146-154

    55. [55]

      Verpoorte E. Lab Chip,2003,3(4): 60N-68N

    56. [56]

      Kawaguchi H. Prog. Polym. Sci., 2000,25(8): 1171-1210

    57. [57]

      Kim J J, Bong K W, Reátegui E, Irimia D, Doyle P S. Nat.Mater.,2017,16(1): 139

    58. [58]

      Park S M, Ahn J Y, Jo M, Lee D K, Lis J T, Craighead H G, Kim S. Lab Chip,2009,9(9): 1206-1212

    59. [59]

      Ressine A, Ekstrom S, Marko-Varga G, Laurell T. Anal. Chem., 2003,75(24): 6968-6974

    60. [60]

      Ahn J Y, Lee S, Jo M, Kang J, Kim E, Jeong O C, Laurell T, Kim S. Anal. Chem., 2012,84(6): 2647-2653

    61. [61]

      Liu X, Li H, Jia W, Chen Z, Xu D. Lab Chip,2017,17(1): 178-185

    62. [62]

      Gotrik M R, Feagin T A, Csordas A T, Nakamoto M A, Soh H T. Acc. Chem. Res., 2016,49(9): 1903-1910

    63. [63]

      Lao Y H, Peck K, Chen L C. Anal. Chem., 2009,81(5): 1747-1754

    64. [64]

      Fitter S, James R. J. Biol. Chem., 2005,280(40): 34193-34201

    65. [65]

      Cho M, Oh S S, Nie J, Stewart R, Radeke M J, Eisenstein M, Coffey P J, Thomson J A, Soh H T. Anal. Chem., 2014,87(1): 821-828

    66. [66]

      Tran D T, Knez K, Janssen K P, Pollet J, Spasic D, Lammertyn J. Biosens. Bioelectron.,2013,43: 245-251

    67. [67]

      Dausse E, Barré A, Aimé A, Groppi A, Rico A, Ainali C, Salgado G, Palau W, Daguerre E, Nikolski M. Biosens. Bioelectron.,2016,80: 418-425

    68. [68]

      Gifford L K, Sendroiu I E, Corn R M, Lupták A. J. Am. Chem. Soc., 2010,132(27): 9265-9267

    69. [69]

      Hobbs K, Cathcart N, Kitaev V. Chem. Commun., 2016,52(63): 9785-9788

    70. [70]

      Jia W, Li H, Wilkop T, Liu X, Yu X, Cheng Q, Xu D, Chen H Y. Biosens. Bioelectron.,2018,109: 206-213

    71. [71]

      Jia W, Lu Z, Yang H, Li H, Xu D. Anal. Chim. Acta,2018,1043: 158-166

    72. [72]

      Ruscito A, de Rosa M C. Front.Chem.,2016,4: 14

    73. [73]

      Kammer M N, Olmsted I R, Kussrow A K, Morris M J, Jackson G W, Bornhop D J. Analyst,2014,139(22): 5879-5884

  • 加载中
计量
  • PDF下载量:  17
  • 文章访问数:  620
  • HTML全文浏览量:  50
文章相关
  • 收稿日期:  2019-12-31
  • 修回日期:  2020-03-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章