毛细管电泳法筛选脱铁转铁蛋白的核酸适配体及筛选影响因素分析

杨歌 赵毅 韩诗邈 朱超 黄渊余 屈锋

引用本文: 杨歌,  赵毅,  韩诗邈,  朱超,  黄渊余,  屈锋. 毛细管电泳法筛选脱铁转铁蛋白的核酸适配体及筛选影响因素分析[J]. 分析化学, 2020, 48(5): 632-641. doi: 10.19756/j.issn.0253-3820.191694 shu
Citation:  YANG Ge,  ZHAO Yi,  HAN Shi-Miao,  ZHU Chao,  HUANG Yuan-Yu,  QU Feng. Screening Aptamer of Apo-transferrin via Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment and Environmental Factors Analysis[J]. Chinese Journal of Analytical Chemistry, 2020, 48(5): 632-641. doi: 10.19756/j.issn.0253-3820.191694 shu

毛细管电泳法筛选脱铁转铁蛋白的核酸适配体及筛选影响因素分析

  • 基金项目:

    本文系国家自然科学基金项目(Nos.21675012,21874010,21827810)资助

摘要: 核酸适配体是通过指数富集配体系统进化(SELEX)技术,在体外筛选获得的与目标分子有高亲和力与特异性的寡核苷酸序列。由于筛选过程周期长且影响因素复杂,使用常规筛选方法进行多因素影响的条件优化的工作量大,样品消耗多,目前还少有系统的研究报道。毛细管电泳(CE)具有高分辨率、快速分离、样品用量小、筛选成本低的优势,是核酸适配体筛选的有效方法。本研究以人血清中脱铁转铁蛋白(A-TF)为模式蛋白,利用CE方法研究核酸库长度、孵育温度、缓冲溶液的种类与pH值、金属离子等因素对靶蛋白与核酸库相互作用的影响。结果表明,较短序列的核酸库与靶蛋白的亲和力更高;孵育温度、缓冲液种类与pH值均影响靶蛋白与核酸复合物的形成;低浓度的K、Ca2+与Mg2+可促进复合物形成。基于优化的筛选条件,经过3轮毛细管电泳法筛选,获得了A-TF的适配体Seq A3,采用CE-LIF测得复合物的亲和常数KD=0.476 μmol/L。此适配体可用于人血清基质中A-TF的识别。

English


    1. [1]

      Tuerk C, Gold L. Science,1990,249: 505-510

    2. [2]

      Morita Y, Leslie M,Kameyama H, Volk DE, Tanaka T. Cancers, 2018,10(3): 80

    3. [3]

      Kim Y S, Raston N H A, Gu M B. Biosens. Bioelectron., 2015,76: 2-19

    4. [4]

      Wang T, Hoy J A, Lamm M H, Marit N H. J. Am. Chem. Soc., 2009,131(41): 14747-14755

    5. [5]

      Levine H A, Nilsenhamilton M. Comput. Biol. Chem., 2007,31(1): 11-35

    6. [6]

      Wang J, Rudzinski J F, Gong Q, Soh H T, Atzberger P J. PloS One,2012,7(8): e43940

    7. [7]

      Chen C K, Kuo T L, Chan P C, Lin L Y. Comput. Biol. Med.,2007, 37(6): 750-759

    8. [8]

      Cherney L T, Obrecht N M, Krylov S N. Anal. Chem.,2013,85(8): 4157-4164

    9. [9]

      Seo Y J, Nilsen H M, Levine H A. Bull. Math. Biol., 2014,76(7): 1455-1521

    10. [10]

      Spill F, Weinstein Z B, Irani Shemirani A, Ho N, Desai D, Zaman M H. Proc. Natl. Acad. Sci. USA,2016,113(43): 12076-12081

    11. [11]

      McKeague M, McConnell E M, Cruz-Toledo J, Bernard E D, Pach A, Mastronardi E, Zhang X, Beking M, Francis T, Giamberardino A, Cabecinha A, Ruscito A, Aranda-Rodriguez R, Dumontier M, DeRosa M C. J. Mol. Evol.,2015,81(5-6): 150-161

    12. [12]

      Carothers J M, Goler J A, Kapoor Y, Lara L, Keasling J D. Nucleic Acids Res.,2010,38(8): 2736-2747

    13. [13]

      Luo X, McKeague M, Pitre S, Dumontier M, Green J, Golshani A, Derosa M C, Dehne F. RNA,2010,16(11): 2252-2262

    14. [14]

      Velez T E, Singh J, Xiao Y, Allen E C, Wong O Y, Chandra M, Kwon S C, Silverman S K. ACS Comb. Sci.,2012,14(12): 680-687

    15. [15]

      Zhu C, Yang G, Ghulam M, Li L, Qu F. Biotechnol. Adv.,2019,37(8): 107432

    16. [16]

      Cheng Y, Zak O, Aisen P, Harrison S C, Walz T. Cell,2004,116(4): 565-576

    17. [17]

      Bienly N, Yu Y J, Bumbaca D, Elstrott J, Boswell C A, Zhang Y, Luk W, Lu Y, Dennis M S, Weimer R M, Chun G I, Watts R J. J. Exp. Med.,2014,211(2): 233-244

    18. [18]

      Zhang M Z, Yu R N, Chen J, Ma Z Y, Zhao Y D. Nanotechnology, 2012,23(48): 485104

    19. [19]

      Lozupone C, Changayil S, Majerfeld I, Yarus M. RNA,2003,9(11): 1315-1322

    20. [20]

      Li Y, Geyer C R, Sen D. Biochemistry,1996,35(21): 6911-6922

    21. [21]

      Velez T E, Singh J, Xiao Y, Allen E C, Wong O Y, Chandra M, Kwon S C, Silverman S K. ACS Comb. Sci.,2012,14(12): 680-687

    22. [22]

      Choi S K, Lee C, Lee K S, Choe S Y, Mo I P, Seong R H, Hong S, Jeon S H. Mol. Cells,2011,32(6): 527-533

    23. [23]

      Toscano J D, Benítez M L, Alvarez L M. Arch. Med. Res.,2011,42(2): 88-96

    24. [24]

      Simmons S C, McKenzie E A, Harris L K, Aplin J D, Brenchley P E, Velasco-Garcia M N, Missailidis S. PloS One,2012,7(9): e37938

    25. [25]

      Lee S, Song K M, Jeon W, Jo H, Shim Y B, Ban C. Biosens. Bioelectron., 2012,35(1): 291-296

    26. [26]

      Ahn J Y, Sang W L, KANG H S, Jo M, Lee D K, Laurell T, Kim S. J. Proteome Res.,2010,9(11): 5568-5573

    27. [27]

      Xiao P, Lv X F, Deng Y L. Anal. Lett.,2012,45(10): 1264-1273

    28. [28]

      LUO Yu, WANG Teng-Fei, LI Wen-Jing, WANG Jin-E, PEI Ren-Jun. Chinese J. Anal. Chem.,2019,47(7): 1068-1074 罗 钰, 王腾飞, 李文静, 王金娥, 裴仁军.分析化学,2019,47(7): 1068-1074

    29. [29]

      Hianik T, Veronika O, Sonlajtnerova M, Grman I. Bioelectrochemistry,2007,70(1): 127-133

    30. [30]

      Catherine A T, Shishido S N, Robbinswelty G A, Diegelman-Parente A. FEBS Open. Bio.,2014,4(1): 788-795

    31. [31]

      Stoltenburg R, Krafciková P, Víglasky V, Strehlitz B. Sci. Rep.,2016,6: 33812

    32. [32]

      Shrivastava G,Hyodo M, Ara M N, Harashima H. Nucleos. Nucleot. Nucl.,2014,33(11): 697-708

    33. [33]

      Tian R Y, Lin C, Yu S Y, Gong S, Hu P, Li Y S, Wu Z C, Gao Y, Zhou Y, Liu Z S, Ren H L, Lu S Y. J. Anal. Methods Chem.,2016,(1): 9241860

    34. [34]

      Lamberti I, Scarano S, Esposito C L, Antoccia A, Antonini G, Tanzarella C, de Franciscis V, Minunni M. Methods,2016,97: 58-68

    35. [35]

      García-Recio E M, Pinto-Díez C, Pérez-Morgado M I, García-Hernández M, Fernández G, Martín M E, González V M. Mol. Ther. Nucleic Acids,2016,5(1): e275

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  26
  • HTML全文浏览量:  1
文章相关
  • 收稿日期:  2019-11-25
  • 修回日期:  2019-12-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章