基于DNA QDs@PDA荧光共振能量转移的半胱氨酸传感器

陈飘飘 邢怡晨 刘洋 郑姗 黄朝表

引用本文: 陈飘飘,  邢怡晨,  刘洋,  郑姗,  黄朝表. 基于DNA QDs@PDA荧光共振能量转移的半胱氨酸传感器[J]. 分析化学, 2020, 48(1): 83-89. doi: 10.19756/j.issn.0253-3820.191576 shu
Citation:  CHEN Piao-Piao,  XING Yi-Chen,  LIU Yang,  ZHENG Shan,  HUANG Chao-Biao. DNA Quantum Dots@Polydopamine as a Fluorescent Sensor for Cysteine Detection Based on Fluorescence Resonance Energy Transfer Effect[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 83-89. doi: 10.19756/j.issn.0253-3820.191576 shu

基于DNA QDs@PDA荧光共振能量转移的半胱氨酸传感器

  • 基金项目:

    本文系国家自然科学基金项目(No.21575129)资助

摘要: 建立了基于DNA量子点(DNA QDs)与聚多巴胺(PDA)荧光共振能量转移(FRET)检测半胱氨酸的方法。DNA QDs发射的荧光被PDA分子吸收,发生FRET,导致DNA QDs的荧光猝灭,使DNA QDs处于荧光"关闭"状态。当存在半胱氨酸时,从多巴胺(DA)向PDA的自发氧化聚合反应将被阻断,使DNA QDs的荧光恢复,处于荧光"开启"状态,且DNA QDs荧光的恢复程度与溶液中半胱氨酸的浓度相关,基于此构建了半胱氨酸荧光传感器。检测半胱氨酸的线性方程为y=0.0181x-0.0185,线性范围为10.0~100.0 μmol/L,检出限为1.7 μmol/L(S/N=3,n=10),此传感器对半胱氨酸具有良好的选择性,常见氨基酸及生物硫醇小分子均无干扰。将本方法用于人尿样中半胱氨酸的测定,回收率为98.6%~105.9%。

English


    1. [1]

      Hirai T, Kanda T, Sato K, Takaishi M, Nakajima K, Yamamoto M, Kamijima R, DiGiovanni J, Sano S. J. Immunol.,2013,192(10):4805-4811

    2. [2]

      Weerapana E, Wang G C, Simon G M, Richter F, Khare S, Dillon M B D, Bachovchin D A, Mowen K, Baker D, Cravatt B F. Nature,2010,468(7325):790-795

    3. [3]

      Shen Q M, Jiang J Y, Liu S L, Han L, Fan X H, Fan M X, Fan Q L, Wang L H, Huang W. Nanoscale,2014,6(12):6315-6321

    4. [4]

      Long Y T, Kong C, Li D W, Li Y, Chowdhury S, Tian H. Small,2011,7(12):1624-1628

    5. [5]

      Li M, Wu X M, Wang Y, Li Y S, Zhu W H, James T D. Chem. Commun.,2014,50(14):1751-1753

    6. [6]

      Chen S H, Chi M Q, Zhu Y, Gao M, Wang C, Lu X F. Appl. Surf. Sci.,2018,440:237-244

    7. [7]

      Selvarajana S, Allurib N R, Chandrasekharc A, Kim S J. Biosens. Bioelectron.,2017,91:203-210

    8. [8]

      Pfeiffer C M, Huff D L, Gunter E W. Clin. Chem.,1999,45(2):290-292

    9. [9]

      Huang S, Yang E L, Yao J D, Liu Y, Xiao Q. Anal. Chim. Acta,2018,1035:192-202

    10. [10]

      Ma Y X, Zhao Y, Xia L L, Huang J X, Gu Y Q, Wang P. Anal. Chim. Acta,2018,1035:161-167

    11. [11]

      Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science,2005,307(5709):538-544

    12. [12]

      Alivisatos A P, Gu W W, Larabell C. Annu. Rev. Biomed. Eng.,2005,7(7):55-76

    13. [13]

      Kim K, Kim J. J. Nanosci. Nanotechnol.,2018,18(2):1320-1322

    14. [14]

      Lin D M, Su Z Q, Wei G. Mater. Today,2018,7:76-83

    15. [15]

      Joel P, Zhili P, Roger L. Molecules,2018,23(2):378-383

    16. [16]

      Himmelstoss S F, Hirsch T. Methods Appl. Fluoresc.,2019,7(2):022002

    17. [17]

      Behboudi H, Mehdipour G, Safari N, Pourmadadi M, Saei A, Omidi M, Tayebi L, Rahmandoust M. Phototropism,2019,104:145-179

    18. [18]

      Guo C X, Xie J L, Wang B, Zheng X T, Yang H B, Li C M. Sci. Rep.,2013,3(10):2957

    19. [19]

      Hong Q, Zhang L L, Bai J M, Liu Z C, Liang R P, Qiu J D. Biosens. Bioelectron.,2015,74:886-894

    20. [20]

      Song T, Zhu X F, Zhou S H, Yang G, Gan W, Yuan Q H. Appl. Surf. Sci.,2015,347:505-513

    21. [21]

      Kuang L, Cao S P, Zhang L, Li Q H, Liu Z C, Liang R P, Qiu J D. Biosens. Bioelectron.,2016,85:798-806

    22. [22]

      Cheng G F, Zhang W B, Zhou Y, Ge Q F, Huang C B. Anal. Methods,2015,7(15):6274-6279

    23. [23]

      Choi C K K, Li J M, Wei K C, Xu Y J, Ho L W C, Zhu M L, To K K W, Choi C H J, Bian L M. J. Am. Chem. Soc.,2015,137(23):7337-7346

    24. [24]

      Qiang W B, Hu H T, Sun L, Li H, Xu D K. Anal. Chem.,2015,87(24):12190-12196

    25. [25]

      Li W, Dong Y F, Wang X, Li H, Xu D K. Biosens. Bioelectron.,2015,66:43-49

    26. [26]

      Liu Q, Pu Z H, Abdullah M A, Abdulrahman O A Y, Sun X P. Sens. Actuators B,2014,191:567-571

    27. [27]

      HAN Yu-Ping, ZHAN Lin, LI Zhen, HU Cheng-Guo, LIU Zhi-Hong. Chinese J. Anal. Chem.,2018,46(8):1178-1185 韩玉平, 谌林, 李贞, 胡成国, 刘志洪.分析化学,2018,46(8):1178-1185

    28. [28]

      Wang D, Chen C, Ke X B, Kang N, Shen Y Q, Liu Y L, Zhou X, Wang H J, Chen C Q, Ren L. ACS Appl. Mater. Interfaces,2015,7(5):3030-3040

    29. [29]

      Ma S S, Qi Y X, Jiang X Q, Chen J Q, Zhou Q Y, Shi G Y, Zhang M. Anal. Chem.,2016,88(23):11647-11653

    30. [30]

      Jiang Y T, Tang Y G, Miao P. Nanoscale,2019,11:8119-8123

    31. [31]

      Wang M K, Wang S, Su D D, Su X G. Anal. Chim. Acta,2018,1035:184-191

    32. [32]

      Chi M Q, Zhu Y, Jing L W, Lu X F. Anal. Chim. Acta,2018,1035:146-158

    33. [33]

      Shen Q M, Jiang J Y, Liu S L, Han L, Fan X H, Fan M X, Fan Q L, Wang L H, Huang W. Nanoscale,2014,6(12):6315-6321

    34. [34]

      Feng T, Chen Y, Feng B B, Yan J L, Di J W. Spectrochim. Acta A,2019,206:97-103

    35. [35]

      Zhang H Y, Jia Z H. Sensors,2017,17(3):520-530

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  518
  • HTML全文浏览量:  46
文章相关
  • 收稿日期:  2019-09-28
  • 修回日期:  2019-11-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章