自催化型石墨烯-金纳米探针的制备及用于非小细胞肺癌CYFRA21-1电化学检测

李瑞怡 储红霞 余敏仪 李姝晗 李在均

引用本文: 李瑞怡,  储红霞,  余敏仪,  李姝晗,  李在均. 自催化型石墨烯-金纳米探针的制备及用于非小细胞肺癌CYFRA21-1电化学检测[J]. 分析化学, 2020, 48(7): 871-880. doi: 10.19756/j.issn.0253-3820.191453 shu
Citation:  LI Rui-Yi,  CHU Hong-Xia,  YU Min-Yi,  LI Shu-Han,  LI Zai-Jun. Synthesis of Self-catalytic Graphene-Gold Nanoprobe and Its Application in Electrochemical Detection of CYFRA21-1 in Non-small Cell Lung Cancer[J]. Chinese Journal of Analytical Chemistry, 2020, 48(7): 871-880. doi: 10.19756/j.issn.0253-3820.191453 shu

自催化型石墨烯-金纳米探针的制备及用于非小细胞肺癌CYFRA21-1电化学检测

  • 基金项目:

    本文系国家重点研发计划项目(No.2018YFC1603001)和国家自然科学基金项目(No.21576115)资助

摘要: 早期诊断对提高肺癌患者生活质量和延长生存期至关重要。本研究通过热解柠檬酸与谷氨酰胺的混合物得到谷氨酰胺功能化石墨烯量子点(Gln-GQD),所制备的Gln-GQD与HAuCI4反应形成Gln-GQD/Au复合物。Gln-GQD作为还原剂将Au3+转化为Au0,最终形成Au纳米晶体。Gln-GQD还作为稳定剂被固定于Au纳米晶体的表面,从而实现Gln-GQD与Au的杂交。扫描电镜、透射电镜、X-射线衍射和红外光谱分析表明,Gln-GQD/Au平均粒径为(31.2±0.15) nm,具有立方金的晶体结构,Au和N元素均匀分布于球形粒子表面,含有丰富的OH、-NH、-COOH等功能基团。将发夹DNA 2(H2)通过Au-S键连接到Au纳米粒子表面,再利用EDC/NHS活化实现Gln-GQD的-COOH与硫堇(Thi)的氨基缩合,得到H2-Gln-GQD/Au-Thi氧化还原探针,基于此构建了无酶放大电化学传感平台。在CYFRA21-1存在下,此传感平台的H2可与预先修饰在金电极表面的发夹DNA 1(H1)杂交,释放出一个CYFRA21-1分子,所释放的CYFRA21-1可直接用于下一次靶DNA循环。通过靶诱导的DNA自组装链式反应,一个CYFRA21-1靶分子可将多个氧化还原探针固定在金电极表面,从而产生显著的电化学信号放大效应。H2与H1的杂交实现对靶DNA的特异性响应,Thi在电极表面发生可逆性氧化还原反应,对靶DNA的响应产生电化学信号,而Gln-GQD/Au原位催化Thi的氧化还原反应将进一步放大检测信号。CYFRA21-1浓度在2~100000 fmol/L之间,其差分脉冲伏安峰电流随CYFRA21-1浓度增加而线性增大。本方法检出限为0.67 fmol/L(S/N=3),灵敏度明显优于文献报道的方法。本方法成功用于人血清中CYFRA21-1的电化学检测。

English


    1. [1]

      Cao M M, Chen W Q. Thoracic Cancer,2019,10(1):3-7

    2. [2]

      Mizuguchi S, Nishiyama N, Iwata T, Nishida T, Izumi N, Tsukioka T, Inoue K, Kameyama M, Suehiro S. Ann. Thorac. Surg.,2007,83(1):216-222

    3. [3]

      Han X, Gao Y H, Ma J M, Sang M J, Zhou S, Huang T, Mao X X. Environ. Sci. Pollut. Res.,2019,26(10):10083-10096

    4. [4]

      Wang L, Liu N, Ma Z. J. Mater. Chem. B,2015,3(14):2867-2872

    5. [5]

      Chen W, Zheng R, Zeng H, Zhang S. Thorac. Cancer,2015,6(2):209-215

    6. [6]

      Mazzone P, Mekhail T. Respir. Med.,2012,106(4):473-492

    7. [7]

      Boeck S, Wittwer C, Heinemann V, Haas M, Kern C, Stieber P, Nagel D, Holdenrieder S B. J. Cancer,2013,108(8):1684-1694

    8. [8]

      Kanaji N, Bandoh S, Fujita J, Ishii T, Ishida T, Kubo A. Lung Cancer,2007,55(3):295-302

    9. [9]

      Xu Y T, Xu L, Qiu M, Wang J, Zhou Q, Xu L, Wang J, Yin R. Sci. Rep.,2015,5:9444

    10. [10]

      Walentowicz-Sadlecka M, Dziobek K, Grabiec M, Sadlecki P, Walentowicz P, Mak P, Szymankiewicz M, Kwinta P, Dutsch-Wicherek M. Am. J. Reprod. Immunol.,2019,81:e13070

    11. [11]

      Watson M M, Lea D, Hagland H R, Soreide K. Transl. Oncol.,2019,12:1583-1588

    12. [12]

      Randlev B, Huang L C, Watatsu M, Marcus M, Lin A, Shih S J. Biologicals,2010,38:249-259

    13. [13]

      Evrard S M, Taranchon-Clermont E, Rouquette I, Murray S, Dintner S, Nam-Apostolopoulos Y C, Bellosillo B, Varela-Rodriguez M, Nadal E, Wiedorn K H. J. Mol. Diagn.,2019,21:1010-1024

    14. [14]

      Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H, Talanta,2020,206:120251

    15. [15]

      Swets M, Wouters A, Krijgsman D, Van Vlierberghe R L P, Boot A, van Eendenburg J.D, van Wezel T, Gelderblom H, van de Velde C J H, van den Elsen P J, Kuppen P J K. Clin. Immunol.,2018,194:80-86

    16. [16]

      Kim T Y, Lee D W, Oh D Y, Kwak Y, Lee H S, Kim W H, Bang Y J. Ann. Oncol.,2019,30:313-313

    17. [17]

      Morjaria S, Frame J, Franco-Garcia A, Geyer A, Kamboj M, Babady N E. Clin. Infect. Dis.,2019,69:1303-1309

    18. [18]

      Sheng Q L, Qiao X J, Zhou M, Zheng J B. Microchim. Acta,2017,184(6):1573-1585

    19. [19]

      Tang Z X, Wang L Y, Ma Z F. Biosens. Bioelectron.,2017,92:577-582

    20. [20]

      Liu K P, Zhang J J, Wang C M, Zhu J J. Biosens. Bioelectron.,2011,26:3627-3632

    21. [21]

      Alagiri M, Rameshkumar P, Pandikumar A. Microchim. Acta,2017,184:3069-3092

    22. [22]

      Liu S, Fang L, Tian Y, Wei W, Wang L. Sens. Actuators B,2017,244:450-457

    23. [23]

      Gerasimova Y V, Kolpashchikov D M. Chem. Soc. Rev.,2014,43(14):6405-6438

    24. [24]

      Chen J, Wen J, Zhuang L, Zhou S. Nanoscale,2016,8(18):9791-9797

    25. [25]

      Wu Z, Fan H, Satyavolu N S R, Wang W, Lake R, Jiang J H, Lu Y. Angew. Chem. Int. Edit.,2017,56(30):8721-8729

    26. [26]

      Li C, Wang H, Shen J, Tang B. Anal. Chem.,2015,87(8):4283-4291

    27. [27]

      Chen Y X, Huang K J, He L L, Wang Y H. Biosens. Bioelectron.,2018,100:274-281

    28. [28]

      Zhao J C, Ma Z F. Biosens. Bioelectron.,2018,102:316-320

    29. [29]

      Fan Z J, Nie Y Y, Wei Y, Zhao J Y, Liao X Z, Zhang J X. Mat. Sci. Eng. C,2019,103:109824

    30. [30]

      Luo P L, Jiang L Q, Zhang W L, Guan X F. Chem. Phys. Lett.,2015,641:29-32

    31. [31]

      Fei X X, Liu Z M, Li Y, Yang G G, Su C K, Zhong H Q, Zhuang Z F, Guo Z Y. J. Alloy Compd.,2017,725:1084-1090

    32. [32]

      Chen M, Hou C J, Huo D Q, Yang M, Fa H B. Anal. Methods,2015,7:9466-9473

    33. [33]

      Chen M, Wang Y Y, Su H L, Mao L, Jiang X N, Zhang T, Dai X Z. Sens. Actuators B,2018,255:2910-2918

    34. [34]

      Hun X, Liu B R, Meng Y. Microchim. Acta,2017,184:3953-3959

    35. [35]

      Li H, Cao Z J, Zhang Y H, Lau C, Lu J Z. Anal. Methods,2010,2:1236-1242

    36. [36]

      Yu Y Y, Huang Z N, Zhou Y, Zhang L H, Liu A L, Chen W, Lin J H, Peng H P. Biosens. Bioelectron.,2019,126:1-6

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  382
  • HTML全文浏览量:  8
文章相关
  • 收稿日期:  2019-07-28
  • 修回日期:  2020-05-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章