新型便携式RGB色度传感器定量检测水中路易氏剂

于竞翔 刘国宏 任丽君 刘萌 黄志平 李建 李丹萍 肖艳华

引用本文: 于竞翔,  刘国宏,  任丽君,  刘萌,  黄志平,  李建,  李丹萍,  肖艳华. 新型便携式RGB色度传感器定量检测水中路易氏剂[J]. 分析化学, 2020, 48(7): 962-968. doi: 10.19756/j.issn.0253-3820.191431 shu
Citation:  YU Jing-Xiang,  LIU Guo-Hong,  REN Li-Jun,  LIU Meng,  HUANG Zhi-Ping,  LI Jian,  LI Dan-Ping,  XIAO Yan-Hua. A New Portable RGB Chromaticity Sensor for Quantitative Determination of Lewisite in Water[J]. Chinese Journal of Analytical Chemistry, 2020, 48(7): 962-968. doi: 10.19756/j.issn.0253-3820.191431 shu

新型便携式RGB色度传感器定量检测水中路易氏剂

  • 基金项目:

    本文系国家重点研发计划项目(No.2017YFA0207102)资助

摘要: 基于路易氏剂及其水解产物在碱性条件下与亚铜离子反应,溶液呈红色的原理,构建了定量检测水中路易氏剂的新型便携式RGB色度传感器。对增溶剂、还原剂的种类、还原剂浓度、CuCl2浓度、NaOH浓度、乙酸用量、反应温度、反应时间等因素进行优化,得到最优反应条件:增溶剂为明胶,还原剂为盐酸羟胺,盐酸羟胺浓度为0.32 mol/L,CuCl2浓度为0.15 mol/L,NaOH浓度为30%(m/m),36%(m/m)乙酸用量为30 μL,反应温度为室温,反应时间为5 min。在检测中采用源于归一化RGB系统的RGB(红绿蓝)色度法,克服了基于RGB模型的由于光强变化会导致3个刺激值的变化的问题。在最优条件下,色度值与路易氏剂浓度的标准曲线的线性范围为0.40~10.05 mg/L。本方法对R值和B值的理论检出限为0.389 mg/L和0.391 mg/L,实际检出限为0.40 mg/L。将本方法应用于人工水样中路易氏剂的测定,回收率为96.9%~106.9%。本方法具有较高的选择性、灵敏度和较好的重复性。

English


    1. [1]

      Goldman M, Dacre J C. Rev. Environ. Contam. Toxicol., 1989,110:75-115

    2. [2]

      Vilensky J A, Redman K. Ann. Emerg. Med., 2003,41(3):378-383

    3. [3]

      Athar M, Li C, Srivastava R K. J. Invest. Derm., 2015,135:S98

    4. [4]

      Goswami D G, Agarwal R, Tewari-Singh N. Toxicol. Lett., 2018,293:112-119

    5. [5]

      Tewari-Singh N, Goswami D G, Kant R, Ammar D A, Kumar D, Enzenauer R W, Casillas R P, Croutch C R, Petrash J M, Agarwal R. Toxicol. Sci., 2017,160(2):420-428

    6. [6]

      Winkler J R. J. Mil. Hist., 2007,71(2):547-548

    7. [7]

      Isono O, Kituda A, Fujii M, Yoshinaka T, Nakagawa G, Suzuki Y. Toxicol. Lett.,2018,293:9-15

    8. [8]

      Vucinic S, Antonijevic B, Tsatsakis A M, Vassilopoulou L, Docea A O, Nosyrev A E, Izotov B N, Thiermann H, Drakoulis N, Brkic D. Environ. Toxicol. Pharmacol., 2017,56:163-171

    9. [9]

      Choi S K, Jeong Y S, Koh Y J, Lee J H, Nam H W, Lee J. Bull. Kor. Chem. Soc., 2019,40(3):279-284

    10. [10]

      Cheh M Y, Chua H C, Hopkins F B, Riches J R, Timperley C M, Lee H S N. Anal. Bioanal. Chem., 2014,406(21):5103-5110

    11. [11]

      Naseri M T, Shamsipur M, Babri M, Saeidian H, Sarabadani M, Ashrafi D, Taghizadeh N. Anal. Bioanal. Chem., 2014,406(21):5221-5230

    12. [12]

      Palcic J D, Jones J S, Flagg E L, Donovan S F. J. Anal. At. Spectrom., 2015,30(8):1799-1808

    13. [13]

      Okumura A, Takada Y, Watanabe S, Hashimoto H, Ezawa N, Seto Y, Sekiguchi H, Maruko H, Takayama Y, Sekioka R, Yamaguchi S, Kishi S, Satoh T, Kondo T, Nagashima H, Nagoya T. Anal. Chem., 2015,87(2):1314-1322

    14. [14]

      Stanelle R D, McShane W J, Dodova E N, Pappas R S, KobelSki R J. J. Anal. Toxicol., 2010,34(3):122-128

    15. [15]

      Carffrey A J, Cole J D, Gehrke R J. T. Nucl. Sci. IEEE, 1992,39(5):1422-1426

    16. [16]

      Bahfenne S, Frost R L. Radiat. Eff. Defect. S., 2010,165(1):46-53

    17. [17]

      Zhou L M, Zhou J M, Liu B, Dong J J, Lu S L, Lu C H. Int. Conf. Bioinform. Biomed. Eng. IEEE(ICBBE), 2008:p2942-2944

    18. [18]

      Zhang Y P, Wang H T, Zhang L, Yang L, Guo X D, Bai Y. Spectrosc. Spect. Anal., 2015,35(2):466-469

    19. [19]

      Vaks V L, Domracheva E G, Nabiev S S, Chemyaeva M B, Babakov A M. Atmos. Ocean. Optics, 2013,26(1):1-4

    20. [20]

      Valdez C A, Leif RN, Hok S, Hart B R. Rev. Anal. Chem., 2018,37(1):1-26

    21. [21]

      Bucur I, Serban S, Surpateanu A, Cupcea N, Viespe C, Grigoriu C, Toader C N, Grigoriu N. 33rd. Int. Semicond. Conf. IEEE, 2010:209-212

    22. [22]

      Lee D H, Lee D N, Hong J I. New J. Chem., 2016,40(11):9021-9024

    23. [23]

      Park D S, Choi S Y, Lee H Y, Kim Y T, Hong J Y, Kim C Y. Proc. IEEE,2013,101(1):18-30

    24. [24]

      Broadbent A D. Color Res. Appl., 2004,29(4):267-272

    25. [25]

      Apyari V V, Gorbunova M V, Isachenko A I,Dmitrienko S G, Zolotov Y A. J. Anal. Chem., 2017,72(11):32-37

    26. [26]

      Li L, Zhang L P, Zhao Y, Chen Z B. Mirochim. Acta, 2018,185(4):235-240

    27. [27]

      Feng L, Zhang Y, Wen L Y, Chen L, Shen Z, Guan Y F. Analyst,2011,136(20):4197-4203

    28. [28]

      Lopez-Molinero A, Cubero V T, Irigoyen R D, Piazuelo D S. Talanta, 2013,103(21):236-244

    29. [29]

      Chen Y, Zilberman Y, Mostafalu P, Sonkusale S R. Biosens. Bioelectron., 2015,67:477-484

    30. [30]

      López-Ruiz N, Martínez-Olmos A, Pérez de Vargas-Sansalvador I M, Fernández-Ramos M D, Carvajal M A, Capitan-Vallvey L F. Sens. Actuators B,2012,171-172:938-945

    31. [31]

      Nitinaivinij K, Parnklang T, Thammacharoen C, Ekgasit S, Wongravee K. Anal. Methods, 2014,6(4):9816-9824

    32. [32]

      Steiner M S, Meier R J, Duerkop A, Wolfbeis O S. Anal. Chem., 2010,82(20):8402-8405

    33. [33]

      Alimelli A, Filippini D, Paolesse R, Moretti S, Ciolfi G, D'Amico A, Lundström I, Natale C D. Anal. Chim. Acta,2007,597(1):103-112

    34. [34]

      Yang X X, Piety N Z, Vignes S M, Benton M S, Kanter J, Shevkoplyas S S. Clin. Chem., 2013,59(10):1506-1513

    35. [35]

      Belyaeva E I, Zrelova L V, Marchenko D Y, Dedov A G. Pet. Chem., 2015,55(1):74-79

    36. [36]

      Kehoe E, Penn R L. J. Chem. Educ., 2013,90(9):1191-1195

    37. [37]

      Botelho B G, de Assis L P, Sena M M. Food Chem., 2014,159(6):175-180

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  1750
  • HTML全文浏览量:  254
文章相关
  • 收稿日期:  2019-07-22
  • 修回日期:  2020-04-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章