鸟嘌呤四链体在生化分析中的应用进展

刘卓靓 陶呈安 王建方

引用本文: 刘卓靓,  陶呈安,  王建方. 鸟嘌呤四链体在生化分析中的应用进展[J]. 分析化学, 2020, 48(2): 153-163. doi: 10.19756/j.issn.0253-3820.191399 shu
Citation:  LIU Zhuo-Liang,  TAO Cheng-An,  WANG Jian-Fang. Progress on Applications of G-quadruplex in Biochemical Analysis[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 153-163. doi: 10.19756/j.issn.0253-3820.191399 shu

鸟嘌呤四链体在生化分析中的应用进展

  • 基金项目:

    本文系国家自然科学基金项目(No.21705163)、湖南省科技创新计划项目(No.2019JJ50737)、国防科技大学校预研资助项目(No.ZK18-03-39)和湖南大学化学生物传感与计量学国家重点实验室开放基金项目(No.2017011)资助

摘要: 鸟嘌呤四链体(G-四链体)是一种特殊的核酸二级结构,它可与高铁血红素结合,形成具有过氧化物酶活性的核酶;也可增强特殊结构染料的荧光强度。G-四链体作为功能核酸中的一种,具有性质稳定、特异性好、功能多样等特点,被广泛应用于各种生化分析中。本文对近年来G-四链体在生化分析中的研究和应用进展进行了评述,对其应用前景进行了展望。

English


    1. [1]

      Divne A M, Allen M. Forensic Sci. Int.,2005,154(2-3):111-121

    2. [2]

      Wu H, Liu Y, Wang H, Wu J, Zhu F, Zou P. Biosens. Bioelectron.,2015,66:277-282

    3. [3]

      Duan R, Zuo X, Wang S, Quan X, Chen D, Chen Z, Jiang L, Fan C, Xia F. J. Am. Chem. Soc.,2013,135(12):4604-4607

    4. [4]

      Seok Y, Byun J Y, Mun H, Kim M G. Microchim. Acta,2014,181(15-16):1965-1971

    5. [5]

      Young S J, Wook E B, Nahm M H. Infect. Chemother.,2013,45(4):351-366

    6. [6]

      Ammann A A. Anal. Bioanal. Chem.,2002,372(3):448-452

    7. [7]

      Stojaovic M N, Landry D W. J. Am. Chem. Soc.,2002,124(33):9678-9679

    8. [8]

      Cen Y, Yang Y, Yu R Q, Chen T, Chu X. Nanoscale,2016,8(15):8202-8209

    9. [9]

      Sen D, Gilbert W. Nature,1988,334(6180):364-366

    10. [10]

      Schultze P, Hud N, Smith F, Feigon J. Nucleic Acids Res.,1999,27(15):3018-3028

    11. [11]

      Guschlbauer W, Chantot J F, Thiele D. J. Biomol. Struct. Dyn.,1990,8(3):491-511

    12. [12]

      Burge S, Parkinson G N, Hazel P, Todd A K, Neidle S. Nucleic Acids Res.,2006,34(19):5402-5415

    13. [13]

      Patel D J, Phan A T N, Kuryavyi V. Nucleic Acids Res.,2007,35(22):7429-7455

    14. [14]

      Kypr J, Kejnovská I, Renciuk D, Vorlickova M. Nucleic Acids Res.,2009,37(6):1713-1725

    15. [15]

      Phan A T. FEBS J.,2010,277(5):1107-1117

    16. [16]

      Kong D M, Ma Y E, Guo J H, Yang W, Shen H X. Anal. Chem.,2009,81(7):2678-2684

    17. [17]

      Li T, Wang E, Dong S. J. Am. Chem. Soc.,2009,131(42):15082-15083

    18. [18]

      Kruger K. Cell,1982,31(1):147-157

    19. [19]

      Carmi N, Shultz L A, Breaker R R. Chem.Biol.,1996,3(12):1039-1046

    20. [20]

      Li Y, Breaker R R. P. Natl. Acad. Sci. USA,1999,96(6):2746-2751

    21. [21]

      Li Y, Liu Y, Breaker R R. Biochemistry,2000,39(11):3106-3114

    22. [22]

      Travascio P, Li Y, Sen D. Chem. Biol.,1998,5(9):505-517

    23. [23]

      Willner I, Shlyahovsky B, Zayats M, Willner B. Chem. Soc. Rev.,2008,37(6):1153-1165

    24. [24]

      Poulos T L, Kraut J. J. Biol. Chem.,1980,255(17):8199-8205

    25. [25]

      Poulos T. Adv. Inorg. Biochem.,1988,7:1-36

    26. [26]

      Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S. Nucleic Acids Res.,2016,44(15):7373-7384

    27. [27]

      Stefan L, Denat F, Monchaud D. Nucleic Acids Res.,2012,40(17):8759-8772

    28. [28]

      Mohanty J, Barooah N, Dhamodharan V, Harikrishna S, Pradeepkumar P I, Bhasikuttan A C. J. Am. Chem. Soc.,2012,135(1):367-376

    29. [29]

      Paige J S, Wu K Y, Jaffrey S R. Science,2011,333(6042):642-646

    30. [30]

      Feng G, Luo C, Yi H, Yuan L, Lin B, Luo X, Hu X, Wang H, Lei C, Nie Z, Yao S. Nucleic Acids Res.,2017,45(18):10380-10392

    31. [31]

      Zhang F T, Nie J, Zhang D W, Chen J T, Zhou Y L, Zhang X X. Anal. Chem., 2014,86(19):9489-9495

    32. [32]

      Li D, Shlyahovsky B, Elbaz J, Willner I. J. Am. Chem. Soc.,2007,129(18):5804-5805

    33. [33]

      Fu R, Jeon K, Jung C, Park H G. Chem. Commun.,2011,47(35):9876-9878

    34. [34]

      Elbaz J, Shlyahovsky B, Willner I. Chem. Commun.,2008,13:1569-1571

    35. [35]

      Teller C, Shimron S, Willner I. Anal. Chem.,2009,81(21):9114-9119

    36. [36]

      Li T, Wang E, Dong S. Chem. Commun., 2008,31:3654-3656

    37. [37]

      Liu H, Ma C, Wang J, Chen H, Wang K. Anal. Biochem.,2017,517:18-21

    38. [38]

      ZHOU Lu, CHENG Hui, WANG Jin-E, PEI Ren-Jun. Chinese J. Anal. Chem.,2016,44(1):13-18 周璐, 程慧, 王金娥, 裴仁军.分析化学,2016, 44(1):13-18

    39. [39]

      Leung C H, Chan D S H, Man B Y W, Wang C J, Lam W, Cheng Y C, Fong W F, Hsiao W L W, Ma D L. Anal. Chem.,2011,83(2):463-466

    40. [40]

      He K, Li W, Nie Z, Huang Y, Liu Z, Nie L, Yao S. Chem. Eur. J.,2012,18(13):3992-3999

    41. [41]

      Li W, Liu Z, Lin H, Nie Z, Chen J, Xu X, Yao S. Anal. Chem.,2010,82(5):1935-1941

    42. [42]

      Wang Y, Wu Y, Liu W, Chu L, Liao Z, Guo W, Liu G Q, He X, Wang K. Talanta,2018,178:491-497

    43. [43]

      Liu Y, Xiong E, Li X, Li J, Zhang X, Chen J. Biosens. Bioelectron.,2017,87:970-975

    44. [44]

      Hu D, Huang Z, Pu F, Ren J, Qu X. Chem. Eur. J.,2011,17:1635-1647

    45. [45]

      Du Y C, Jiang H X, Huo Y F, Han G M, Kong D M. Biosens. Bioelectron.,2016,77:971-977

    46. [46]

      Leung K H, He H Z, Zhong H J, Lu L, Chan D S, Ma D L, Leung C H. Methods,2013,64(3):224-228

    47. [47]

      Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, Willner I. J. Am. Chem. Soc.,2004,126(24):7430-7431

    48. [48]

      Li H, Fu H W, Zhao T, Kong D M. RSC Adv.,2015,5(9):6475-6480

    49. [49]

      Liu Z, Li W, Nie Z, Peng F, Huang Y, Yao S. Chem. Commun.,2014,50(52):6875-6878

    50. [50]

      Hu Y, Shen Q, Li W, Liu Z, Nie Z, Yao S. Biosens. Bioelectron.,2015,63:331-338

    51. [51]

      Chen Q, Zuo J, Chen J, Tong P, Mo X, Zhang L, Li J. Biosens. Bioelectron.,2015, 72:326-331

    52. [52]

      Xu L, Chen Y, Zhang R, Gao T, Zhang Y, Shen X, Pei R. J. Fluoresc., 2017,27(2):569-574

    53. [53]

      Shen Q, Zhou L, Yuan Y, Huang Y, Xiang B, Chen C, Nie Z, Yao S. Biosens. Bioelectron.,2014,55:187-194

    54. [54]

      Li D, Wieckowska A, Willner I. Angew. Chem. Int. Ed.,2008,47(21):3927-3931

    55. [55]

      Li T, Shi L, Wang E, Dong S. Chem-Eur. J.,2009,15(14):3347-3350

    56. [56]

      Yin B C, Ye B C, Tan W, Wang H, Xie C C. J. Am. Chem. Soc.,2009,131(41):14624-14625

    57. [57]

      Moshe M, Elbaz J, Willner I. Nano Lett.,2009,9(3):1196-1200

    58. [58]

      Elbaz J, Moshe M, Shlyahovsky B, Willner I. Chem-Eur. J.,2009,15(14):3411-3418

    59. [59]

      Elbaz J, Shlyahovsky B, Willner I. Chem. Commun.,2008,13:1569-1571

    60. [60]

      Weizmann Y, Cheglakov Z, Willner I. J. Am. Chem. Soc.,2008,130(51):17224-17225

    61. [61]

      Deng M, Zhang D, Zhou Y, Zhou X. J. Am. Chem. Soc.,2008,130(39):13095-13102

    62. [62]

      Niazov T, Pavlov V, Xiao Y, Gill R, Willner I. Nano Lett.,2004,4(9):1683-1687

    63. [63]

      Yuan L, Tu W, Bao J, Dai Z. Anal. Chem.,2015,87(1):686-692

    64. [64]

      Gao Y, Li B. Anal. Chem.,2013,85(23):11494-11500

    65. [65]

      Mittal S, Thakur S, Mantha A K, Kaur H. Biosens. Bioelectron.,2019,124:233-243

    66. [66]

      Wang F, Lu C H, Liu X, Freage L, Willner I. Anal. Chem.,2014,86(3):1614-1621

    67. [67]

      Choi H M, Chang J Y, Trinh L A, Padilla J E, Fraser S E, Pierce N A. Nat. Biotechnol.,2010,28(11):1208

    68. [68]

      Shimron S, Wang F, Orbach R, Willner I. Anal. Chem.,2012,84(2):1042-1048

    69. [69]

      Hua Y, Changenet B P, Improta R, Vaya I, Gustavsson T, Kotlyar A B, Zikich D, Sket P, Plavec J, Markovitsi D. J. Phys. Chem. C,2012,116:14682-14689

    70. [70]

      Ren W, Zhang Y, Chen H, Gao Z, Li N, Luo H. Anal. Chem.,2016,88(5):1385-1390

    71. [71]

      He L, Sun X, Zhang H, Shao F. Angew. Chem. Int. Ed.,2018,57(38):12453-12457.

    72. [72]

      Sannohe Y, Endo M, Katsuda Y, Hidaka K, Sugiyama H. J. Am. Chem. Soc.,2010,132(46):16311-16313

    73. [73]

      Sathya S, Velu R, Maria C D, Bhaskar M M. Anal. Bioanal. Chem.,2019,411:1319-1330

    74. [74]

      Liu Z, Luo X, Li Z, Huang Y, Nie Z, Wang H H, Yao S. Anal. Chem.,2017,89(3):1892-1899

    75. [75]

      Luo X, Xue B, Feng G, Zhang J, Lin B, Zeng P, Li H, Yi H, Zhang X L, Zhu H, Nie Z. J. Am. Chem. Soc.,2019,141(13):5182-5191

    76. [76]

      Shieh Y A, Yang S J, Wei M F, Shieh M J. ACS Nano,2010,4(3):1433-1442

    77. [77]

      Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, Wang C, Liang Z, Ma X, Liang X J. Biomaterials,2016,91:44-56

    78. [78]

      Wang K, You M, Chen Y, Han D, Zhu Z, Huang J, Williams K, Yang C Y, Tan W. Angew. Chem. Int. Ed.,2011,50(27):6098-6101

    79. [79]

      Yuan Q, Wu Y, Wang J, Lu D Q, Zhao Z L, Liu T, Zhang X B, Tan W H. Angew. Chem. Int. Ed.,2013,52:13965-13969

    80. [80]

      Shi T H, Wang M L, Li H, Wang M, Luo X Y, Huang Y, Wang H H, Nie Z, Yao S Z. Sci. Rep.,2018,8(1):5551

    81. [81]

      Cheng M, Cui Y X, Wang J, Zhang J, Zhu L N, Kong D M. ACS Appl. Mater. Interfaces,2019,11:13158-13167

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  819
  • HTML全文浏览量:  143
文章相关
  • 收稿日期:  2019-07-13
  • 修回日期:  2019-11-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章