纳米金标记液相色谱-电感耦合等离子体质谱法测定人血清中转铁蛋白

韩亚琛 冯流星 李红梅 熊金平

引用本文: 韩亚琛,  冯流星,  李红梅,  熊金平. 纳米金标记液相色谱-电感耦合等离子体质谱法测定人血清中转铁蛋白[J]. 分析化学, 2020, 48(2): 206-214. doi: 10.19756/j.issn.0253-3820.191394 shu
Citation:  HAN Ya-Chen,  FENG Liu-Xing,  LI Hong-Mei,  XIONG Jin-Ping. Quantification of Human Serum Transferrin Based on High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry with Gold Nanoparticles Labeling[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 206-214. doi: 10.19756/j.issn.0253-3820.191394 shu

纳米金标记液相色谱-电感耦合等离子体质谱法测定人血清中转铁蛋白

  • 基金项目:

    本文系国家重点研发计划项目(No.2017YFF0205402)和国家自然科学基金项目(No.11475163)资助

摘要: 建立了基于纳米金(AuNPs)标记并结合高效液相色谱(HPLC)-电感耦合等离子质谱(ICP-MS)的联用技术,通过测量转铁蛋白(Tf)上标记的AuNPs的量,实现了标准Tf及人血清中Tf的准确定量分析。在本研究中,将Tf与过量的AuNPs在磷酸盐缓冲液(pH 6.8)中孵育,形成AuNPs-Tf标记物,之后通过HPLC分离AuNPs-Tf,标记后Tf分子上附着的AuNPs上的Au原子可起到增强信号的作用,通过ICP-MS在线检测AuNPs-Tf上Au的信号,实现复杂血清样品中Tf的准确定量分析。本方法中Tf浓度与AuNPs-Tf上的Au信号强度之间线性关系良好(R2=0.9959),线性范围宽(3个数量级),方法检出限低至6 ng/mL。本方法经标准Tf验证后,用于人血清标准物质(ERM-DA470/IFCC)中Tf的检测,测量结果在标准物质不确定度范围内,回收率在95.2%~102.6%之间。由于AuNPs的信号增强效应和ICP-MS的灵敏检测,相比于传统的以吸光度为检测方式的酶联免疫法,本方法在检出限和灵敏度方面均有明显提升。

English


    1. [1]

      Ogawa C, Tsuchiya K, Tomosugi N, Kanda F, Maeda K. Maeda T. Plos One,2017,12(6):1-14

    2. [2]

      Zhang R, Shp S, Feng G, Zhang C J, Tang B Z, Liu B. Anal. Chem.,2017,90(2):1154-1160

    3. [3]

      JIN Li-Chun, ZHANG Hao-Yi, CAO Wei-Li. Journal of Radioimmanology,2002,15(2):75-77 金礼春, 张豪一, 曹伟丽.放射免疫学,2002,15(2):75-77

    4. [4]

      LIU Cheng-Xia, CAO Xuan, LEI Cun-Xi, SHEN Guo-Li. Chinese J. Anal. Chem., 2004,32(9):1135-1138 刘成霞, 曹轩, 雷存喜, 沈国励.分析化学,2004,32(9):1135-1138

    5. [5]

      Directive 98/79/EC of the European Parliament and of the Council of 27 October 1998 on in Vitro Diagnostic Medical Devices. Off J Eur Communities. L331:1-37

    6. [6]

      International Organization for Standardization. ISO 17511:In Vitro Diagnostic Medical Devices-Measurement of Quantities in Biological Samples-Metrological Traceability of Values Assigned to Calibrators and Control Materials, Geneva:International Organization for Standardization,2003

    7. [7]

      Calderón C F, Encinar J R, Sanz M A. Mass Spectrom. Rev.,2017,37(6):715-737

    8. [8]

      Feng L X, Zhang D, Wang J, Shen D R, Li H M. Anal. Chim Acta,2015, 884:19-25

    9. [9]

      Feng L X, Zhang D, Wang J, Li H M. Anal. Methods, 2014,6:7655-7662

    10. [10]

      Patil U S, Adireddy S, Jaiswal A, Mandava S, Lee B R. Int. J. Mol. Sci.,2015,16(10):24417-24450

    11. [11]

      HUO Zhong-Zhong, FENG Liu-Xing, LI Hong-Mei, Xiong Jin-Ping. Chinese J. Anal. Chem., 2019,47(12):1931-1937 霍中中, 冯流星, 李红梅, 熊金平.分析化学,2019,47(12):1931-1937

    12. [12]

      Shiang Y C, Huang C C, Chen W Y, Chen P C, Chang H T. J. Mater. Chem.,2012,22(26):12972-12982

    13. [13]

      Careri M, ElviriL, Maffifini M, Mangia A, Mucchino C, Terenghi M. Rapid Commun. Mass Spectrom.,2008,22:807-811

    14. [14]

      Crotti S, Granzotto C, Cairns W R L, Cescon P. Barbante C. J. Mass Spectrom.,2011,46:1297-1303

    15. [15]

      Liu R, Liu X, Tang Y R, Wu L, Hou X D, Lv Y. Anal. Chem.,2011,83:2330-2336

    16. [16]

      Liang Y, Jiang X, Tang N, Yang L, Chen H, Wang Q. Anal. Bioanal. Chem.,2015,407:2373-2381

    17. [17]

      Markiewicz B, Komorowicz I, Sajnóg A, Belter M, Barałkiewicz D. Talanta,2015,132(15):814-828

    18. [18]

      Sanzmedel A. Anal. Bioanal. Chem.,2016,408(20):1-3

    19. [19]

      Song G, Zhou F, Xu C, Li B. Analyst,2016,141(4):1257-1265

    20. [20]

      Keighron J D, Keating C D. Nano Biotechnol. Protoc.,2013,1026:163-174

    21. [21]

      Fojnica A, Osmanović A, Tarakčija D, Demiroví S. CMBEBIH,2017,62:142-146

    22. [22]

      Bell N C, Minelli C, Shard A G. Anal. Methods,2013,5(18):4591-4601

    23. [23]

      António M, Nogueira J, Rui V. Nanomaterials,2018,8(4):200

    24. [24]

      Zhang C, Zhang Z, Yu B, Shi J, Zhang X. Anal. Chem.,2002,74(1):96-99

    25. [25]

      Liu J M, Li Y, Jiang Y, Yan X P. J. Proteome Res.,2010,9:3545-3550

    26. [26]

      Li F, Zhao Q, Wang C, Lu X, Li X F, Le X C. Anal. Chem.,2010,82(8):3399-3403

    27. [27]

      Timoszyk A A. Bull. Mater. Sci.,2018,41(6):154

    28. [28]

      Frens G. Nat. Phys. Sci.,1973,241:20-22

    29. [29]

      Balasubramanian S K, Yang L, Yung L Y L, Ong C N, Ong W Y, Yu L E. Biomaterials,2010,31(34):9023-9030

    30. [30]

      WANG Wen-Xing, CHEN Qi-Fan, ZHANG Li, XU Shu-Kun. Journal of Northeastern University,2007,28(2):301-304 王文星, 陈启凡, 张丽, 徐淑坤.东北大学学报,2007,28(2):301-304

    31. [31]

      Allabashi R, Stach W. J. Nanoparticle Res.,2008,11(8):2003-2011

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  147
  • HTML全文浏览量:  6
文章相关
  • 收稿日期:  2019-07-08
  • 修回日期:  2019-10-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章