串联的纳米传感器用于癌细胞中miRNA的超灵敏检测

陈蜜 岳仁叶 李智 王刚林 马楠

引用本文: 陈蜜,  岳仁叶,  李智,  王刚林,  马楠. 串联的纳米传感器用于癌细胞中miRNA的超灵敏检测[J]. 分析化学, 2020, 48(1): 40-48. doi: 10.19756/j.issn.0253-3820.191318 shu
Citation:  CHEN Mi,  YUE Ren-Ye,  LI Zhi,  WANG Gang-Lin,  MA Nan. Cascaded Nanosensors for Ultrasensitive Detection of miRNA in Cancer Cells[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 40-48. doi: 10.19756/j.issn.0253-3820.191318 shu

串联的纳米传感器用于癌细胞中miRNA的超灵敏检测

  • 基金项目:

    本文系国家自然科学基金项目(Nos.21475093,21522506)资助

摘要: MicroRNA(miRNA)的检测在癌症诊断和治疗中具有重要意义。本研究设计了DNA序列,组装了3组金纳米粒子-量子点复合物,基于此叠加构建了以熵驱动催化循环为模型的单重、双重和多重循环放大的3种纳米传感器。叠加的传感器中,上层复合物催化循环解组装输出的产物作为下层复合物的催化链,引发其解组装,释放更多荧光信号,实现了多重放大。传感器中每叠加一个核酸催化循环体系,检测限降低一个数量级,最终构建的传感器的检测限达到fmol/L级。本研究通过串联熵驱动的核酸催化循环体系,构建了动态可调的、可定量检测细胞中不同表达水平miRNA的新型纳米传感器。

English


    1. [1]

      Wienholds E, Plasterk R H. FEBS Lett.,2005,579(26):5911-5922

    2. [2]

      He L, Hannon G J. Nat. Rev. Genet.,2004,5(7):522-531

    3. [3]

      Ambros V. Nature,2004,431(7006):350-355

    4. [4]

      Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. Chem. Rev.,2013,113(8):6207-6233

    5. [5]

      Bartel D P. Cell,2009,136(2):215-233

    6. [6]

      Bartel D P. Cell,2004,116(2):281-297

    7. [7]

      Di Stefano V, Zaccagnini G, Capogrossi M C, Martelli F. Vasc. Pharmacol.,2011,55(4):111-118

    8. [8]

      Esquela-Kerscher A, Slack F J. Nat. Rev. Cancer,2006,6(4):259-269

    9. [9]

      Calin G A, Croce C M. Nat. Rev. Cancer,2006,6(11):857-866

    10. [10]

      Liang D, Meyer L, Chang D W, Lin J, Pu X, Ye Y Q, Gu J, Wu X F, Lu K. Cancer Res.,2010,70(23):9765-9776

    11. [11]

      Witwer K W. Clin. Chem.,2015,61(1):56-63

    12. [12]

      Kayano M, Higaki S, Satoh J I, Matsumoto K, Matsubara E, Takikawa O, Niida S. Biomarker Res.,2016,4(1):22

    13. [13]

      Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K. Oncogene,2006,25(17):2537-2545

    14. [14]

      Sato Y, Ichihashi T, Nishizawa S, Teramae N. Angew. Chem. Int. Ed.,2012,51(26):6369-6372

    15. [15]

      Cheung T H, Quach N L, Charville G W, Liu L, Park L, Edalati A,Yoo B, Hoang P, Rando T A. Nature, 2012,482(7386):524-528

    16. [16]

      Hansen T B, Jensen T I, Clausen B H, Bramsen J B, Finsen B, Damgaard C K, Kjems J. Nature,2013,495(7441):384-388

    17. [17]

      Benes V, Castoldi M. Methods,2010,50(4):244-249

    18. [18]

      Marabita F, de Candia P, Torri A, Tegner J, Abrignani S, Rossi R L. Brief. Bioinform.,2015,17(2):204-212

    19. [19]

      Wang F, Lu C H, Willner I. Chem. Rev.,2014,114(5):2881-2941

    20. [20]

      Chen J, Tang L, Chu X, Jiang J. Analyst,2017,142(17):3048-3061

    21. [21]

      Yin B C, Liu Y Q, Ye B C. J. Am. Chem. Soc.,2012,134(11):5064-5067

    22. [22]

      Wu C, Cansiz S, Zhang L, Teng I T, Qiu L, Li J, Tan W. J. Am. Chem. Soc.,2015,137(15):4900-4903

    23. [23]

      Khlebtsov N, Dykman L. Chem. Soc. Rev.,2011,40(3):1647-1671

    24. [24]

      Seferos D S, Giljohann D A, Hill H D, Prigodich A E, Mirkin C A. J. Am. Chem. Soc.,2007,129(50):15477-15479

    25. [25]

      Dulkeith E, Ringler M, Klar T A, Feldmann J, Javier A M, Parak W J. Nano Lett.,2005,5(4):585-589

    26. [26]

      Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. Science,2002,298(5599):1759-1762

    27. [27]

      Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat. Methods,2008,5(9):763-775

    28. [28]

      ZHANG Tao, LI Zhi, SUN Quan-Hong, MA Nan. Chinese J. Anal. Chem.,2016,44(12):1840-1845 张涛, 李智, 孙权洪, 马楠.分析化学,2016,44(12):1840-1845

    29. [29]

      Jou A F J, Lu C H, Ou Y C, Wang S S, Hsu S L, Willner I, Ho J A A. Chem. Sci.,2015,6(1):659-665

    30. [30]

      Ma N, Sargent E H, Kelley S O. Nat. Nanotechnol.,2009,4(2):121-125

    31. [31]

      He X, Zeng T, Li Z, Wang G, Ma N. Angew. Chem. Int. Ed.,2016,55(9):3073-3076

    32. [32]

      Zhang D Y, Turberfield A J, Yurke B, Winfree E. Science,2007,318(5853):1121-1125

    33. [33]

      Liang C P, Ma P Q, Liu H, Guo X, Yin B C, Ye B C. Angew. Chem. Int. Ed.,2017,56(31):9077-9081

    34. [34]

      Li D, Zhou W, Yuan R, Xiang Y. Anal. Chem.,2017,89(18):9934-9940

    35. [35]

      Quan K,Huang J, Yang X H, Yang Y J, Ying L, Wang H, Xie N L, Ou M, Wang K M. Anal. Chem.,2016,88(11):5857-5864

    36. [36]

      Yu W W, Qu L, Guo W Z, Peng X G. Chem. Mater.,2003,15(14):2854-2860

    37. [37]

      Mitchell P S, Parkin R K, Kroh E M, Fritz B R, Wyman S K, Pogosova-Agadjanyan E L, Peterson A, Noteboom J, O'Briant K C, Allen A, Lin D W, Urban N. Proc. Natl. Acad. Sci. USA,2008,105(30):10513-10518

    38. [38]

      Yang Y J, Huang J, Yang X, He X X, Quan K, Xie N L, Qu M, Wang K M. Anal. Chem.,2017,89(11):5850-5856

    39. [39]

      Liu Y Q, Zhang M, Yin B C, Ye B C. Anal. Chem.,2012,84(12):5165-5169

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  541
  • HTML全文浏览量:  53
文章相关
  • 收稿日期:  2019-06-04
  • 修回日期:  2019-11-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章