Citation: Zheyue Li, Di Wu, Wanbing Gong, Jiayi Li, Shuaikang Sang, Hengjie Liu, Ran Long, Yujie Xiong. Highly Efficient Photocatalytic CO2 Methanation over Ru-Doped TiO2 with Tunable Oxygen Vacancies[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 2212043-2212050. doi: 10.14102/j.cnki.0254-5861.2022-0212 shu

Highly Efficient Photocatalytic CO2 Methanation over Ru-Doped TiO2 with Tunable Oxygen Vacancies

  • Corresponding author: Wanbing Gong, Yujie Xiong,
  • Z.L. and D.W. contribute equally to this work.
  • Received Date: 22 October 2022
    Accepted Date: 11 November 2022
    Available Online: 16 November 2022


  • Solar-driven CO2 methanation is an imperative and promising approach to relieve the global warming and environmental crisis, yet remains a great challenge due to the low reaction efficiency, unsatisfactory selectivity and poor stability. In this work, we demonstrate a facile and efficient strategy to prepare Ru-doped TiO2 photocatalyst with tunable oxygen vacancies using the ascorbic acid as a reducing agent for the CO2 methanation reaction. The optimal Ru-TiO2-OV-50 exhibits a remarkable CH4 production rate of 81.7 mmol g-1 h-1 with a 100% CH4 selectivity under a 1.5 W cm-2 light illumination, which is significantly higher than commercial Ru/TiO2 and other reported catalysts. We reveal that the superior photocatalytic CO2 methanation performance is mainly due to the synergistic effect of Ru doping and TiO2 with tunable oxygen vacancies. Impressively, the light rather than thermal effect is confirmed as the main influencing factor by experimental studies. In addition, in situ spectroscopic technology is performed to investigate the CO2 methanation reaction pathway. This work will open an avenue to design and prepare highly efficient photocatalyst with tunable oxygen vacancies for CO2 conversion and other related applications.
  • 加载中
    1. [1]

      Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J.; Wei, W.; Sun, Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017, 9, 1019-1024.  doi: 10.1038/nchem.2794

    2. [2]

      Wang, L.; Zhang, W.; Zheng, X.; Chen, Y.; Wu, W.; Qiu, J.; Zhao, X.; Zhao, X.; Dai, Y.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869-876.  doi: 10.1038/s41560-017-0015-x

    3. [3]

      Cai, M.; Wu, Z.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C.; Wang, S.; Feng, K.; Xu, A. -B.; Tang, S.; Tavasoli, A.; Peng, M.; Liu, W.; Helmy, A. S.; He, L.; Ozin, G. A.; Zhang, X. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 2021, 6, 807-814.  doi: 10.1038/s41560-021-00867-w

    4. [4]

      Barrio, J.; Mateo, D.; Albero, J.; García, H.; Shalom, M. A heterogeneous carbon nitride-nickel photocatalyst for efficient low-temperature CO2 methana-tion. Adv. Energy Mater. 2019, 9, 1902738.  doi: 10.1002/aenm.201902738

    5. [5]

      Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739-9754.  doi: 10.1021/jacs.7b05362

    6. [6]

      Guo, Y.; Mei, S.; Yuan, K.; Wang, D. -J.; Liu, H. -C.; Yan, C. -H.; Zhang, Y. -W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203-6215.  doi: 10.1021/acscatal.7b04469

    7. [7]

      Wan, L.; Zhou, Q.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J.; Yan, X.; Xia, M.; Li, Y. F.; Jelle, A. A.; Ulmer, U.; Jia, J.; Li, T.; Sun, W.; Ozin, G. A. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889-898.  doi: 10.1038/s41929-019-0338-z

    8. [8]

      Chen, Y.; Zhang, Y.; Fan, G.; Song, L.; Jia, G.; Huang, H.; Ouyang, S.; Ye, J.; Li, Z.; Zou, Z. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 2021, 5, 3235-3251.  doi: 10.1016/j.joule.2021.11.009

    9. [9]

      Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light. Chin. J. Struct. Chem. 2022, 41, 2201007-2201013.

    10. [10]

      Wang, Z.; Hong, J.; Ng, S. -F.; Liu, W.; Huang, J.; Chen, P.; Ong, W. -J. Recent progress of perovskite oxide in emerging photocatalysis landscape: water splitting, CO2 reduction, and N2 fixation. Acta Phys. Chim. Sin. 2021, 37, 2011033.

    11. [11]

      Li, N.; Peng, J.; Shi, Z.; Zhang, P.; Li, X. Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CTx-MXenes for highly selective CO2 electrochemical reduction. Chin. J. Catal. 2022, 43, 1906-1917.  doi: 10.1016/S1872-2067(21)64018-4

    12. [12]

      Xu, Z. -T., X.; Xie, K. Enhanced CO2 electrolysis with metal-oxide interface structures. Chin. J. Struct. Chem. 2021, 40, 31-41.

    13. [13]

      Wang, C.; Sun, Z.; Zheng, Y.; Hu, Y. H. Recent progress in visible light photocatalytic conversion of carbon dioxide. J. Mater. Chem. A 2019, 7, 865-887.  doi: 10.1039/C8TA09865D

    14. [14]

      He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Xin, L. Advances in nanostructured silicon carbide photocatalysts. Acta Phys. Chim. Sin. 2022, 38, 2201021.

    15. [15]

      Chai, Y.; Chen, Y.; Wang, B.; Jiang, J.; Liu, Y.; Shen, J.; Wang, X.; Zhang, Z. Sn2+ and Cu2+ self-codoped Cu2ZnSnS4 nanosheets switching from p-type to n-type semiconductors for visible-light-driven CO2 reduction. ACS Sustain. Chem. Eng. 2022, 10, 8825-8834.  doi: 10.1021/acssuschemeng.2c01564

    16. [16]

      Shen, R.; Hao, L.; Ng, Y. H.; Zhang, P.; Arramel, A.; Li, Y.; Li, X. Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. Chin. J. Catal. 2022, 43, 2453-2483.  doi: 10.1016/S1872-2067(22)64104-4

    17. [17]

      Quan, F.; Zhan, G.; Mao, C.; Ai, Z.; Jia, F.; Zhang, L.; Gu, H.; Liu, S. Efficient light-driven CO2 hydrogenation on Ru/CeO2 catalysts. Catal. Sci. Technol. 2018, 8, 6503-6510.  doi: 10.1039/C8CY01787E

    18. [18]

      Lin, L.; Wang, K.; Yang, K.; Chen, X.; Fu, X.; Dai, W. The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2-x)Nx. Appl. Catal., B. 2017, 204, 440-455.  doi: 10.1016/j.apcatb.2016.11.054

    19. [19]

      Mateo, D.; Albero, J.; Garcia, H. Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation. Joule 2019, 3, 1949-1962.  doi: 10.1016/j.joule.2019.06.001

    20. [20]

      Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew. Chem. Int. Ed. 2018, 57, 7610-7627.  doi: 10.1002/anie.201710509

    21. [21]

      Zhou, Y.; Zhang, Q.; Shi, X.; Song, Q.; Zhou, C.; Jiang, D. Photocatalytic reduction of CO2 into CH4 over Ru-doped TiO2: synergy of Ru and oxygen vacancies. J. Colloid Interf. Sci. 2022, 608, 2809-2819.  doi: 10.1016/j.jcis.2021.11.011

    22. [22]

      Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight. Chin. J. Struct. Chem. 2022, 41, 2201034-2201039.

    23. [23]

      Su, B.; Huang, H.; Ding, Z.; Roeffaers, M. B. J.; Wang, S.; Long, J. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photo-catalytic CO2 reduction. J. Mater. Sci. Technol. 2022, 124, 164-170.  doi: 10.1016/j.jmst.2022.01.030

    24. [24]

      Wu, Z.; Guo, S.; Kong, L. -H.; Geng, A. -F.; Wang, Y. -J.; Wang, P.; Yao, S.; Chen, K. -K.; Zhang, Z. -M. Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chin. J. Catal. 2021, 42, 1790-1797.  doi: 10.1016/S1872-2067(21)63820-2

    25. [25]

      Chai, S.; Men, Y.; Wang, J.; Liu, S.; Song, Q.; An, W.; Kolb, G. Boosting CO2 methanation activity on Ru/TiO2 catalysts by exposing (001) facets of anatase TiO2. J. CO2 Util. 2019, 33, 242-252.  doi: 10.1016/j.jcou.2019.05.031

    26. [26]

      Abe, T.; Tanizawa, M.; Watanabe, K.; Taguchi, A. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ. Sci. 2009, 2, 315-321.  doi: 10.1039/b817740f

    27. [27]

      Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478-3493.  doi: 10.1007/s12274-016-1225-4

    28. [28]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photo-reduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962-4179.  doi: 10.1021/acs.chemrev.8b00400

    29. [29]

      Liu, S.; Li, Y.; Ding, K.; Chen, W.; Zhang, Y.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068-2076.

    30. [30]

      Wang, R.; Yang, P.; Wang, S.; Wang, X. Distorted carbon nitride nano-sheets with activated n→π* transition and preferred textural properties for photocatalytic CO2 reduction. J. Catal. 2021, 402, 166-176.  doi: 10.1016/j.jcat.2021.08.025

    31. [31]

      Li, D.; Huang, Y.; Li, S.; Wang, C.; Li, Y.; Zhang, X.; Liu, Y. Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2. Chin. J. Catal. 2020, 41, 154-160.  doi: 10.1016/S1872-2067(19)63475-3

    32. [32]

      Zhou, J.; Gao, Z.; Xiang, G.; Zhai, T.; Liu, Z.; Zhao, W.; Liang, X.; Wang, L. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation. Nat. Commun. 2022, 13, 327.

    33. [33]

      Panagiotopoulou, P. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: Ⅱ. Effect of alkali additives on the reaction pathway. Appl. Catal., B 2018, 236, 162-170.  doi: 10.1016/j.apcatb.2018.05.028

    34. [34]

      Li, M.; Li, P.; Chang, K.; Wang, T.; Liu, L.; Kang, Q.; Ouyang, S.; Ye, J. Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem. Commun. 2015, 51, 7645-7648.  doi: 10.1039/C5CC01124H

    35. [35]

      Cai, S.; Zhang, M.; Li, J.; Chen, J.; Jia, H. Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of photothermocatalytic CO2 reduction to solar fuels. Solar RRL 2021, 5, 2000313.  doi: 10.1002/solr.202000313

    36. [36]

      Lin, Y.; Tian, Z.; Zhang, L.; Ma, J.; Jiang, Z.; Deibert, B. J.; Ge, R.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.  doi: 10.1038/s41467-018-08144-3

    37. [37]

      Jarzembska, K.; Seal, S.; Woźniak, K.; Szadkowska, A.; Bieniek, M.; Grela, K. X-ray photoelectron spectroscopy and reactivity studies of a series of ruthenium catalysts. ChemCatChem 2009, 1, 144-151.  doi: 10.1002/cctc.200900052

    38. [38]

      Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interf. Anal. 2015, 47, 1072-1079.  doi: 10.1002/sia.5852

    39. [39]

      Marchal, C.; Cottineau, T.; Méndez-Medrano, M. G.; Colbeau‐Justin, C.; Caps, V.; Keller, V. Au/TiO2-gC3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv. Energy Mater. 2018, 8, 1702142.  doi: 10.1002/aenm.201702142

    40. [40]

      Wu, M.; Zhang, J.; Liu, C.; Gong, Y.; Wang, R.; He, B.; Wang, H. Rational design and fabrication of noble‐metal‐free NixP cocatalyst embedded 3D N-TiO2/g-C3N4 heterojunctions with enhanced photocatalytic hydrogen evolution. ChemCatChem 2018, 10, 3069-3077.  doi: 10.1002/cctc.201800197

    41. [41]

      Eom, J. -Y.; Lim, S. -J.; Lee, S. -M.; Ryu, W. -H.; Kwon, H. -S. Black titanium oxide nanoarray electrodes for high rate Li-ion microbatteries. J. Mater. Chem. A 2015, 3, 11183-11188.  doi: 10.1039/C5TA01718A

    42. [42]

      Ge, H.; Zhang, B.; Liang, H.; Zhang, M.; Fang, K.; Chen, Y.; Qin, Y. Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Appl. Catal., B 2020, 263, 118133.  doi: 10.1016/j.apcatb.2019.118133

    43. [43]

      Yin, G.; Huang, X.; Chen, T.; Zhao, W.; Bi, Q.; Xu, J.; Han, Y.; Huang, F. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catal. 2018, 8, 1009-1017.  doi: 10.1021/acscatal.7b03473

    44. [44]

      Zhou, Z.; Li, X.; Li, J.; You, Z. Promoting CO2 methanation performance of Ru/TiO2 through Co-activity of exposing (001) facets and oxygen vacancies of TiO2. Mater. Sci. Semicon. Proc. 2022, 146, 106677.  doi: 10.1016/j.mssp.2022.106677

    45. [45]

      Cheng, S.; Gao, Y. -J.; Yan, Y. -L.; Gao, X.; Zhang, S. -H.; Zhuang, G. -L.; Deng, S. -W.; Wei, Z. -Z.; Zhong, X.; Wang, J. -G. Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2. J. Energy Chem. 2019, 39, 144-151.  doi: 10.1016/j.jechem.2019.01.020

    46. [46]

      Chen, S.; Abdel-Mageed, A. M.; Li, D.; Bansmann, J.; Cisneros, S.; Biskupek, J.; Huang, W.; Behm, R. J. Morphology‐engineered highly active and stable Ru/TiO2 catalysts for selective CO methanation. Angew. Chem. Int. Ed. 2019, 58, 10732-10736.  doi: 10.1002/anie.201903882

    47. [47]

      Du, J.; Huang, Y.; Huang, Z.; Wu, G.; Wu, B.; Han, X.; Chen, C.; Zheng, X.; Cui, P.; Wu, Y. Reversing the catalytic selectivity of single-atom Ru via support amorphization. JACS Au 2022, 2, 1078-1083.  doi: 10.1021/jacsau.2c00192

    48. [48]

      Miao, B.; Ma, S. S. K.; Wang, X.; Su, H.; Chan, S. H. Catalysis mecha-nisms of CO2 and CO methanation. Catal. Sci. Technol. 2016, 6, 4048-4058.  doi: 10.1039/C6CY00478D

    49. [49]

      Gupta, N.; Kamble, V.; Kartha, V.; Iyer, R.; Thampi, K. R.; Gratzel, M. FTIR spectroscopic study of the interaction of CO2 and CO2 + H2 over partially oxidized RuTiO2 catalyst. J. Catal. 1994, 146, 173-184.  doi: 10.1016/0021-9517(94)90020-5

    50. [50]

      Abdel-Mageed, A. M.; Widmann, D.; Olesen, S. E.; Chorkendorff, I.; Biskupek, J.; Behm, R. J. Selective CO methanation on Ru/TiO2 catalysts: role and influence of metal-support interactions. ACS Catal. 2015, 5, 6753-6763.  doi: 10.1021/acscatal.5b01520

    51. [51]

      Aldana, P. A. U.; Ocampo, F.; Kobl, K.; Louis, B.; Thibault-Starzyk, F.; Daturi, M.; Bazin, P.; Thomas, S.; Roger, A. C. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catal. Today 2013, 215, 201-207.  doi: 10.1016/j.cattod.2013.02.019

    52. [52]

      Dalla Betta, R.; Shelef, M. Heterogeneous methanation: in situ infrared spectroscopic study of RuAl2O3 during the hydrogenation of CO. J. Catal. 1977, 48, 111-119.  doi: 10.1016/0021-9517(77)90082-3

    53. [53]

      Eckle, S.; Anfang, H. -G.; Behm, R. J. R. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. J. Phys. Chem. C 2011, 115, 1361-1367.  doi: 10.1021/jp108106t

    54. [54]

      Eckle, S.; Denkwitz, Y.; Behm, R. J. Activity, selectivity, and adsorbed reaction intermediates/reaction side products in the selective methanation of CO in reformate gases on supported Ru catalysts. J. Catal. 2010, 269, 255-268.  doi: 10.1016/j.jcat.2009.10.025

    55. [55]

      Prairie, M. R.; Renken, A.; Highfield, J. G.; Thampi, K. R.; Grätzel, M. A fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium. J. Catal. 1991, 129, 130-144.  doi: 10.1016/0021-9517(91)90017-X

    56. [56]

      Zhang, S. -T.; Yan, H.; Wei, M.; Evans, D. G.; Duan, X. Hydrogenation mechanism of carbon dioxide and carbon monoxide on Ru(0001) surface: a density functional theory study. RSC Adv. 2014, 4, 30241-30249.  doi: 10.1039/C4RA01655F

  • 加载中
    1. [1]

      Jiahuan LiJiahao XieXinyu WangYing DaiXiaoqin XuJin LiuZhuang CaiXin MengJinlong Zou . Acid-Stable CoWO4/WO3-Microrod Coated by a Thin Carbon-Layer as Efficient Pt Co-Catalysts for Methanol Oxidation and Oxygen Reduction. Chinese Journal of Structural Chemistry, 2022, 41(7): 2207059-2207067. doi: 10.14102/j.cnki.0254-5861.2022-0104

    2. [2]

      Da Xin SHI Ya Qing FENG Shun He ZHONG . Photocatalytic Synthesis of Oxygenates from Gaseous CO2 and CH4 over Semiconductor. Chinese Chemical Letters, 2005, 16(5): 685-687.

    3. [3]

      CAI Yuan-ZhuPAN Xiao-YangLI Yun-PengYI Zhi-Guo . Photocatalytic Oxidation of Low Molecular Weight Hydrocarbon Gases over Pt-TiO2 Nanotubes. Chinese Journal of Structural Chemistry, 2016, 35(9): 1328-1338. doi: 10.14102/j.cnki.0254-5861.2011-1152

    4. [4]

      Chun HE Ya XIONG Dong SHU Xi Hai ZHU . Enhanced Photocatalytic Efficiency of TiO2 by Combining the Modification of Ag Nanoparticles with the Application of Anodic Bias. Chinese Chemical Letters, 2003, 14(5): 539-542.

    5. [5]

      WANG Ya-FangLI Li-PingHUANG Xin-SongLI Guang-She . A New Ti3+-assisted Synthesis of Pd-supported TiO2 Nanomaterial with Enhanced Photocatalytic Activity for Hydrogen Generation and Methyl Orange Degradation. Chinese Journal of Structural Chemistry, 2015, 34(8): 1203-1216. doi: 10.14102/j.cnki.0254-5861.2011-0669

    6. [6]

      Xue Ping LI Jing Bo ZHANG Fen YIN Yuan LIN Xu Rui XIAO . Preparation and Photocatalytic Characterization of Nanoporous TiO2. Chinese Chemical Letters, 2002, 13(9): 891-892.

    7. [7]

      Dao Rong LI Ling Na SUN Chang Wen HU . Simple Preparation of the Photocatalyst of Sn2+-doped Titania. Chinese Chemical Letters, 2006, 17(8): 1089-1092.

    8. [8]

      LI Guo-PingWENG WenLI Fei-Ming . Photocatalytic Performance of α- and β-Ga2O3 for the Degradation of Tetracycline Hydrochloride in Water. Chinese Journal of Structural Chemistry, 2015, 34(11): 1779-1785. doi: 10.14102/j.cnki.0254-5861.2011-0987

    9. [9]

      Yue-Ying YANYue LIJie DENGXi ZHAONa TAYong-Dong CHEN . Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol by Mg-Doped Ceria Monolithic Catalyst. Chinese Journal of Inorganic Chemistry, 2022, 38(7): 1402-1410. doi: 10.11862/CJIC.2022.139

    10. [10]

      Mei-Chao GAOYun-Yun GONGZi-Yue LIBai-Hui WANGXiao-Qing HUANGWen-Jiao YU . Fabrication of Bi12O17Br2 with Efficient Photocatalytic N2 Fixation Boosted by Photoinduced Oxygen Vacancies. Chinese Journal of Inorganic Chemistry, 2022, 38(3): 542-550. doi: 10.11862/CJIC.2022.043

    11. [11]

      Dan Feng LI Yi Hang GUO Chang Wen HU Li MAO En Bo WANG . Kinetics of Photocatalytic Degradation of Formic Acid over Silica Composite Films Based on Polyoxometalates. Chinese Chemical Letters, 2002, 13(6): 575-578.

    12. [12]

      Yan HuXibao LiWeiwei WangFang DengLu HanXiaoming GaoZhijun FengZhi ChenJuntong HuangFanyan ZengFan Dong . Bi and S Co-doping g-C3N4 to Enhance Internal Electric Field for Robust Photocatalytic Degradation and H2 Production. Chinese Journal of Structural Chemistry, 2022, 41(6): 2206069-2206078. doi: 10.14102/j.cnki.0254-5861.2022-0103

    13. [13]

      Li Qin DANG Wan Sheng YOU Xin ZHANG Cui Ying HUANG Zhi Bin LEI Zhen Gang SUN Can LI . Photocatalytic Hydrogen Evolution of Keggin-type Polyoxotungstates and their Electrochemical Behaviors. Chinese Chemical Letters, 2006, 17(7): 973-976.

    14. [14]

      Da Bin GAO Jing Mei YIN Yong An MA . The Carbonylations of Cyclohexene with Carbon Dioxide. Chinese Chemical Letters, 1999, 10(7): 553-554.

    15. [15]

      FAN Qi-ZheLIAO Chun-FaLI Zhi-FengZHANG Zhi-WenCHEN XinYU Chang-Lin . Distinct Role of La Doping in Regulating the Photo-Oxidation and Reduction of BiOBr Nanosheet. Chinese Journal of Inorganic Chemistry, 2018, 34(11): 2115-2126. doi: 10.11862/CJIC.2018.255

    16. [16]

      Mu-yao LIUJian-yun WANGLian DUANXian LIULei ZHANG . Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance. Journal of Fuel Chemistry and Technology, 2022, 50(2): 243-249. doi: 10.1016/S1872-5813(21)60166-4

    17. [17]

      Tao YangPengke DengLele WangJie HuQinqin LiuHua Tang . Simultaneous Photocatalytic Oxygen Production and Hexavalent Chromium Reduction in Ag3PO4/C3N4 S-scheme Heterojunction. Chinese Journal of Structural Chemistry, 2022, 41(6): 2206023-2206030. doi: 10.14102/j.cnki.0254-5861.2022-0062

    18. [18]

      LI Hui-JunYAN Ling-LingWANG YuanXU Zhou-QingXU JunWU Wei-Na . Cd Complexes Based on Dipyrazolyl Ligand: Temperature-Driven Assembly, Luminescent and Application in Photocatalysis. Chinese Journal of Inorganic Chemistry, 2016, 32(10): 1831-1838. doi: 10.11862/CJIC.2016.229

    19. [19]

      Tian LiuYunfeng LiHejia SunMin ZhangZhiling XiaQing Yang . Asymmetric Structure Awakened n-π* Electron Transition in Sulfur and Selenium Co-doped g-C3N4 with Efficient Photocatalytic Performance. Chinese Journal of Structural Chemistry, 2022, 41(6): 2206055-2206061. doi: 10.14102/j.cnki.0254-5861.2022-0152

    20. [20]

      Shuai-Shuai MACheng-Juan HUANGYu-Qing ZONGJian-Dong GUZhao-Lian YEJin-Juan XUE . Preparation and Photocatalytic Activity of Ag/Ag2MoO4/Bi2MoO6 Composite Photocatalyst. Chinese Journal of Inorganic Chemistry, 2021, 37(3): 531-540. doi: 10.11862/CJIC.2021.055

  • PDF Downloads(1)
  • Abstract views(27)
  • HTML views(6)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint