Recent Developments of Dinitrogen Activation on Metal Complexes and Clusters
- Corresponding author: Jun Li, junli@tsinghua.edu.cn
Citation:
Xue-Lu Ma, Meng Li, Jun-Bo Lu, Cong-Qiao Xu, Jun Li. Recent Developments of Dinitrogen Activation on Metal Complexes and Clusters[J]. Chinese Journal of Structural Chemistry,
;2022, 41(12): 2212080-2212088.
doi:
10.14102/j.cnki.0254-5861.2022-0197
Himmel, H. J.; Reiher, M. Intrinsic dinitrogen activation at bare metal atoms. Angew. Chem. Int. Ed. 2006, 45, 6264-6288.
doi: 10.1002/anie.200502892
Zhan, C. G.; Nichols, J. A.; Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184-4195.
doi: 10.1021/jp0225774
Hong, Q. S.; Li, T. Y.; Zheng, S. S.; Chen, H. B.; Chu, H. H.; Xu, K. D.; Li, S. N.; Mei, Z. W.; Zhao, Q. H.; Ren, W. J.; Zhao, W. G.; Pan, P. Tuning double layer structure of WO3 nanobelt for promoting the electrochemical nitrogen reduction reaction in water. Chin. J. Struct. Chem. 2021, 40, 519-526.
Stahl, S. S. Organotransition metal chemistry: from bonding to catalysis. J. Am. Chem. Soc. 2010, 132, 8524-8525.
Liu, H. M.; Wei, L.; Liu, F.; Pei, Z. X.; Shi, J.; Wang, Z. J.; He, D.; Chen, Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions. ACS Catal. 2019, 9, 5245-5267.
doi: 10.1021/acscatal.9b00994
Fryzuk, M. D.; Johnson, S. A. The continuing story of dinitrogen activation. Coord. Chem. Rev. 2000, 200, 379-409.
Lv, Z. J.; Wei, J. N.; Zhang, W. X.; Chen, P.; Deng, D. H.; Shi, Z. J.; Xi, Z. F. Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N-C bond formation. Natl. Sci. Rev. 2020, 7, 1564-1583.
doi: 10.1093/nsr/nwaa142
Honkala, K.; Hellman, A.; Remediakis, IN.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Norskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555-558.
doi: 10.1126/science.1106435
Logadottir, A.; Nørskov, J. K. Ammonia synthesis over a Ru (0001) surface studied by density functional calculations. J. Catal. 2003, 220, 273-279.
doi: 10.1016/S0021-9517(03)00156-8
Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 2014, 114, 4041-4062.
doi: 10.1021/cr400641x
Burford, R. J.; Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 2017, 1, 0026.
doi: 10.1038/s41570-017-0026
Musaev, D. G. Theoretical prediction of a new dinitrogen reduction process: utilization of four dihydrogen molecules and a Zr2Pt2 cluster. J. Phys. Chem. B 2004, 108, 10012-10018.
doi: 10.1021/jp0482767
Yamabe, T.; Hori, K.; Minato, T.; Fukui, K. Theoretical study on the bonding nature of transition-metal complexes of molecular nitrogen. Inorg. Chem. 1980, 19, 2154-2159.
doi: 10.1021/ic50209a063
Holland, P. L. Metal-dioxygen and metal-dinitrogen complexes: where are the electrons? Dalton Trans. 2010, 39, 5415-5425.
doi: 10.1039/c001397h
Henderson, R. Activation of dinitrogen at binuclear sites. Transition Met. Chem. 1990, 15, 330-336.
doi: 10.1007/BF01061944
Crossland, J. L.; Tyler, D. R. Iron-dinitrogen coordination chemistry: dinitrogen activation and reactivity. Coord. Chem. Rev. 2010, 254, 1883-1894.
doi: 10.1016/j.ccr.2010.01.005
Pan, F. Can structural chemistry point the way: exploring the relevance between structure and properties. Chin. J. Struct. Chem. 2020, 39, 7.
Zhang, M. Y.; Zhang, Y. Y.; Zhang, H. X.; Wang, K.; Wang, Y. Q.; Zeng, Y. F.; Liu, G. Y. Synthesis, crystal structure and catalytic activity palladium (Ⅱ) complexes containing bulky azole ligands. Chin. J. Struct. Chem. 2020, 39, 1669-1674.
Chirik, P. J. Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Trans. 2007, 16-25.
Pfirrmann, S.; Limberg, C.; Herwig, C.; Stößer, R.; Ziemer, B. A dinuclear nickel (Ⅰ) dinitrogen complex and its reduction in single-electron steps. Angew. Chem. Int. Ed. 2009, 48, 3357-3361.
doi: 10.1002/anie.200805862
Betley, T. A.; Peters, J. C. Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. J. Am. Chem. Soc. 2003, 125, 10782-10783.
doi: 10.1021/ja036687f
Holland, P. L. Electronic structure and reactivity of three-coordinate iron complexes. Acc. Chem. Res. 2008, 41, 905-914.
doi: 10.1021/ar700267b
Lu, J. B.; Ma, X. L.; Wang, J. Q.; Jiang, Y. F.; Li, Y.; Hu, H. S.; Xiao, H.; Li, J. The df-d dative bonding in a uranium-cobalt heterobimetallic complex for efficient nitrogen fixation. Inorg. Chem. 2019, 58, 7433-7439.
doi: 10.1021/acs.inorgchem.9b00598
Ferreira, R. B.; Murray, L. J. Cyclophanes as platforms for reactive multimetallic complexes. Acc. Chem. Res. 2019, 52, 447-455.
doi: 10.1021/acs.accounts.8b00559
Eaton, M. C.; Catalano, V. J.; Shearer, J.; Murray, L. J. Dinitrogen insertion and cleavage by a metal-metal bonded tricobalt (Ⅰ) cluster. J. Am. Chem. Soc. 2021, 143, 5649-5653.
doi: 10.1021/jacs.1c01840
Allen, A. D.; Senoff, C. V. Nitrogenopentammineruthenium (Ⅱ) complexes. Chem. Commun. (London) 1965, 621-622.
Harrison, D. F.; Weissberger, E.; Taube, H. Binuclear ion containing nitrogen as a bridging group. Science 1968, 159, 320-322.
doi: 10.1126/science.159.3812.320
Pun, D.; Lobkovsky, E.; Chirik, P. J. Indenyl zirconium dinitrogen chemistry: N2 coordination to an isolated zirconium sandwich and synthesis of side-on, end-on dinitrogen compounds. J. Am. Chem. Soc. 2008, 130, 6047-6054.
doi: 10.1021/ja801021w
Fryzuk, M. D. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res. 2009, 42, 127-133.
doi: 10.1021/ar800061g
Chalkley, M. J.; Drover, M. W.; Peters, J. C. Catalytic N2-to-NH3 (or-N2H4) conversion by well-defined molecular coordination complexes. Chem. Rev. 2020, 120, 5582-5636.
doi: 10.1021/acs.chemrev.9b00638
Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76-78.
doi: 10.1126/science.1085326
Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 2011, 3, 120-125.
doi: 10.1038/nchem.906
Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84-87.
doi: 10.1038/nature12435
Takahashi, T.; Mizobe, Y.; Sato, M.; Uchida, Y.; Hidai, M. Protonation reactions of molybdenum and tungsten dinitrogen complexes with halogen acids. Hydride hydrazido (2-) and diazenido complexes as intermediate stages of reduction. J. Am. Chem. Soc. 1980, 102, 7461-7467.
doi: 10.1021/ja00545a011
Oshita, H.; Mizobe, Y.; Hidai, M. Preparation and properties of molybdenum and tungsten dinitrogen complexes: XLI*. Silylation and germylation of a coordinated dinitrogen in cis-[M(N2)2(PMe2Ph)4] (M = Mo, W) using R3ECl/NaI and R3ECl/Na mixtures (E = Si, Ge). X-ray structure of trans-[WI(NNGePh3)(PMe2Ph)4]·C6H6. J. Organomet. Chem. 1993, 456, 213-220.
doi: 10.1016/0022-328X(93)80428-E
Hidai, M.; Mizobe, Y. Recent advances in the chemistry of dinitrogen complexes. Chem. Rev. 1995, 95, 1115-1133.
doi: 10.1021/cr00036a008
Tanabe, Y.; Nishibayashi, Y. Catalytic dinitrogen fixation to form ammonia at ambient reaction conditions using transition metal-dinitrogen complexes. Chem. Rec. 2016, 16, 1549-1577.
doi: 10.1002/tcr.201600025
Lee, Y.; Mankad, N. P.; Peters, J. C. Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nat. Chem. 2010, 2, 558-565.
doi: 10.1038/nchem.660
Moret, M. -E.; Peters, J. C. N2 functionalization at iron metallaboratranes. J. Am. Chem. Soc. 2011, 133, 18118-18121.
doi: 10.1021/ja208675p
Suess, D. L.; Peters, J. C. H-H and Si-H bond addition to Fe≡NNR2 intermediates derived from N2. J. Am. Chem. Soc. 2013, 135, 4938-4941.
doi: 10.1021/ja400836u
Ung, G.; Peters, J. C. Low-temperature N2 binding to two-coordinate L2Fe0 enables reductive trapping of L2FeN2- and NH3 generation. Angew. Chem. Int. Ed. 2015, 54, 532-535.
Higuchi, J.; Kuriyama, S.; Eizawa, A.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation. Dalton Trans. 2018, 47, 1117-1121.
doi: 10.1039/C7DT04327A
Bezdek, M. J.; Guo, S.; Chirik, P. J. Terpyridine molybdenum dinitrogen chemistry: synthesis of dinitrogen complexes that vary by five oxidation states. Inorg. Chem. 2016, 55, 3117-3127.
doi: 10.1021/acs.inorgchem.6b00053
Klopsch, I.; Finger, M.; Wurtele, C.; Milde, B.; Werz, D. B.; Schneider, S. Dinitrogen splitting and functionalization in the coordination sphere of rhenium. J. Am. Chem. Soc. 2014, 136, 6881-6883.
doi: 10.1021/ja502759d
Tanaka, H.; Nishibayashi, Y.; Yoshizawa, K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 2016, 49, 987-995.
doi: 10.1021/acs.accounts.6b00033
Fryzuk, M. D.; Kozak, C. M.; Bowdridge, M. R.; Patrick, B. O.; Rettig, S. J. Nitride formation by thermolysis of a kinetically stable niobium dinitrogen complex. J. Am. Chem. Soc. 2002, 124, 8389-8397.
doi: 10.1021/ja025997f
Evans, W. J.; Chamberlain, L.; Ulibarri, T. A.; Ziller, J. W. Reactivity of trimethylaluminum with (C5Me5)2Sm(THF)2: synthesis, structure, and reactivity of the samarium methyl complexes (C5Me5)2Sm[(μ-Me)AlMe2-(μ-Me)]2Sm(C5Me5)2 and (C5Me5)2SmMe(THF). J. Am. Chem. Soc. 1988, 110, 6423-6432.
doi: 10.1021/ja00227a023
MacLachlan, E. A.; Fryzuk, M. D. Synthesis and reactivity of side-on-bound dinitrogen metal complexes. Organometallics 2006, 25, 1530-1543.
doi: 10.1021/om051055i
Ma, X.; Tang, Y.; Lei, M. Bent and planar structures of μ-η2: η2-N2 dinuclear early transition metal complexes. Dalton Trans. 2014, 43, 11658-11666.
doi: 10.1039/C4DT00646A
Ding, K. Y.; Pierpont, A. W.; Brennessel, W. W.; Lukat-Rodgers, G.; Rodgers, K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. Cobalt-dinitrogen complexes with weakened N-N bonds. J. Am. Chem. Soc. 2009, 131, 9471-9472.
doi: 10.1021/ja808783u
Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 1997, 275, 1445-1447.
doi: 10.1126/science.275.5305.1445
Falcone, M.; Chatelain, L.; Scopelliti, R.; Živković, I.; Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 2017, 547, 332-335.
doi: 10.1038/nature23279
Fryzuk, M. D.; Johnson, S. A.; Rettig, S. J. New mode of coordination for the dinitrogen ligand: a dinuclear tantalum complex with a bridging N2 unit that is both side-on and end-on. J. Am. Chem. Soc. 1998, 120, 11024-11025.
doi: 10.1021/ja982377z
Fryzuk, M. D.; Johnson, S. A.; Patrick, B. O.; Albinati, A.; Mason, S. A.; Koetzle, T. F. New mode of coordination for the dinitrogen ligand: formation, bonding, and reactivity of a tantalum complex with a bridging N2 unit that is both side-on and end-on. J. Am. Chem. Soc. 2001, 123, 3960-3973.
doi: 10.1021/ja0041371
Figg, T. M.; Holland, P. L.; Cundari, T. R. Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation. Inorg. Chem. 2012, 51, 7546-7550.
doi: 10.1021/ic300150u
MacLeod, K. C.; Vinyard, D. J.; Holland, P. L. A multi-iron system capable of rapid N2 formation and N2 cleavage. J. Am. Chem. Soc. 2014, 136, 10226-10229.
doi: 10.1021/ja505193z
Singh, D.; Buratto, W. R.; Torres, J. F.; Murray, L. J. Activation of dinitrogen by polynuclear metal complexes. Chem. Rev. 2020, 120, 5517-5581.
doi: 10.1021/acs.chemrev.0c00042
Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. Studies of low-coordinate iron dinitrogen complexes. J. Am. Chem. Soc. 2006, 128, 756-769.
doi: 10.1021/ja052707x
Chiang, K. P.; Bellows, S. M.; Brennessel, W. W.; Holland, P. L. Multimetallic cooperativity in activation of dinitrogen at iron-potassium sites. Chem. Sci. 2014, 5, 267-274.
doi: 10.1039/C3SC52487F
McWilliams, S. F.; Holland, P. L. Dinitrogen binding and cleavage by multinuclear iron complexes. Acc. Chem. Res. 2015, 48, 2059-2065.
doi: 10.1021/acs.accounts.5b00213
Reiners, M.; Baabe, D.; Munster, K.; Zaretzke, M. K.; Freytag, M.; Jones, P. G.; Coppel, Y.; Bontemps, S.; del Rosal, I.; Maron, L.; Walter, M. D. NH3 formation from N2 and H2 mediated by molecular tri-iron complexes. Nat. Chem. 2020, 12, 740-746.
doi: 10.1038/s41557-020-0483-7
Xin, X.; Douair, I.; Zhao, Y.; Wang, S.; Maron, L.; Zhu, C. Dinitrogen cleavage by a heterometallic cluster featuring multiple uranium-rhodium bonds. J. Am. Chem. Soc. 2020, 142, 15004-15011.
doi: 10.1021/jacs.0c05788
Jori, N.; Barluzzi, L.; Douair, I.; Maron, L.; Fadaei-Tirani, F.; Zivkovic, I.; Mazzanti, M. Stepwise reduction of dinitrogen by a uranium-potassium complex yielding a U(Ⅵ)/U(Ⅳ) tetranitride cluster. J. Am. Chem. Soc. 2021, 143, 11225-11234.
doi: 10.1021/jacs.1c05389
Forrest, S. J.; Schluschaß, B.; Yuzik-Klimova, E. Y.; Schneider, S. Nitrogen fixation via splitting into nitrido complexes. Chem. Rev. 2021, 121, 6522-6587.
doi: 10.1021/acs.chemrev.0c00958
Cui, C. N.; Zhang, H. Y.; Luo, Z. X.; Pan, F. Preparation and reaction of naked metal clusters for catalysis and genetic materials. Chin. J. Struct. Chem. 2020, 39, 989-998.
Han, Y.; Jiang, Y.; Yang, J. J.; Lin, S. C.; Tang, Z. C.; Zheng, L. S. Tuning solvent composition to enhance the stability of metal clusters in mass spectrometry. Chin. J. Struct. Chem. 2022, 41, 2204034-2204039.
Kuganathan, N.; Green, J. C.; Himmel, H. -J. Dinitrogen fixation and activation by Ti and Zr atoms, clusters and complexes. New J. Chem. 2006, 30, 1253-1262.
doi: 10.1039/b606328d
Zhao, Y.; Cui, J. T.; Wang, M.; Valdivielso, D. Y.; Fielicke, A.; Hu, L. R.; Cheng, X.; Liu, Q. Y.; Li, Z. Y.; He, S. G.; Ma, J. B. Dinitrogen fixation and reduction by Ta3N3H0, 1- cluster anions at room temperature: hydrogen-assisted enhancement of reactivity. J. Am. Chem. Soc. 2019, 141, 12592-12600.
doi: 10.1021/jacs.9b03168
Li, Z. Y.; Mou, L. H.; Wei, G. P.; Ren, Y.; Zhang, M. Q.; Liu, Q. Y.; He, S. G. C-N coupling in N2 fixation by the ditantalum carbide cluster anions Ta2C4-. Inorg. Chem. 2019, 58, 4701-4705.
doi: 10.1021/acs.inorgchem.8b03502
Geng, C.; Li, J.; Weiske, T.; Schwarz, H. Complete cleavage of the N≡N triple bond by Ta2N+ via degenerate ligand exchange at ambient temperature: a perfect catalytic cycle. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 21416-21420.
doi: 10.1073/pnas.1913664116
Li, Z. Y.; Li, Y.; Mou, L. H.; Chen, J. J.; Liu, Q. Y.; He, S. G.; Chen, H. A facile N≡N bond cleavage by the trinuclear metal center in vanadium carbide cluster anions V3C4-. J. Am. Chem. Soc. 2020, 142, 10747-10754.
doi: 10.1021/jacs.0c02021
Wang, X. Y.; Peng, X. B.; Zhang, Y. F.; Ni, J.; Au, C. T.; Jiang, L. L. Efficient ammonia synthesis over a core-shell Ru/CeO2 catalyst with a tunable CeO2 size: DFT calculations and XAS spectroscopy studies. Inorg. Chem. Front. 2019, 6, 396-406.
doi: 10.1039/C8QI01244J
Himmel, H. J.; Hübner, O.; Klopper, W.; Manceron, L. Cleavage of the N2 triple bond by the Ti dimer: a route to molecular materials for dinitrogen activation? Angew. Chem. Int. Ed. 2006, 45, 2799-2802.
doi: 10.1002/anie.200503709
Zhou, M.; Jin, X.; Gong, Y.; Li, J. Remarkable dinitrogen activation and cleavage by the Gd dimer: from dinitrogen complexes to ring and cage nitrides. Angew. Chem. Int. Ed. 2007, 46, 2911-2914.
doi: 10.1002/anie.200605218
Gong, Y.; Zhao, Y.; Zhou, M. Formation and characterization of the tetranuclear scandium nitride: Sc4N4. J. Phys. Chem. A. 2007, 111, 6204-6207.
doi: 10.1021/jp070816n
Jiang, G. D.; Li, Z. Y.; Mou, L. H.; He, S. G. Dual iron sites in activation of N2 by iron-sulfur cluster anions Fe5S2- and Fe5S3-. J. Phys. Chem. Lett. 2021, 12, 9269-9274.
doi: 10.1021/acs.jpclett.1c02683
Mou, L. H.; Li, Y.; Li, Z. Y.; Liu, Q. Y.; Ren, Y.; Chen, H.; He, S. G. Dinitrogen activation and functionalization by heteronuclear metal cluster anions FeV2C2- at room temperature. J. Phys. Chem. Lett. 2020, 11, 9990-9994.
doi: 10.1021/acs.jpclett.0c02921
Ma, X. L.; Liu, J. C.; Xiao, H.; Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 2018, 140, 46-49.
doi: 10.1021/jacs.7b10354
Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.
doi: 10.1038/s41467-018-03795-8
Cherkasov, N.; Ibhadon, A.; Fitzpatrick, P. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 2015, 90, 24-33.
doi: 10.1016/j.cep.2015.02.004
Zhang, X.; Chen, A.; Zhang, Z.; Zhou, Z. Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J. Mater. Chem. A 2018, 6, 18599-18604.
doi: 10.1039/C8TA07683A
Chen, Z. W.; Yan, J. M.; Jiang, Q. Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction? Small Methods 2019, 3, 1800291.
doi: 10.1002/smtd.201800291
Han, B.; Meng, H.; Li, F.; Zhao, J. Fe3 cluster anchored on the C2N monolayer for efficient electrochemical nitrogen fixation. Catalysts 2020, 10, 974.
doi: 10.3390/catal10090974
Ma, D.; Zeng, Z.; Liu, L.; Huang, X.; Jia, Y. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers. J. Phys. Chem. C 2019, 123, 19066-19076.
doi: 10.1021/acs.jpcc.9b05250
Li, M.; Cui, Y.; Zhang, X.; Luo, Y.; Dai, Y.; Huang, Y. Screening a suitable Mo form supported on graphdiyne for effectively electrocatalytic N2 reduction reaction: from atomic catalyst to cluster catalyst. J. Phys. Chem. Lett. 2020, 11, 8128-8137.
doi: 10.1021/acs.jpclett.0c02354
Chen, Z. W.; Chen, L. X.; Jiang, M.; Chen, D.; Wang, Z. L.; Yao, X.; Singh, C. V.; Jiang, Q. A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction. J. Mater. Chem. A 2020, 8, 15086-15093.
doi: 10.1039/D0TA04919K
Zheng, G.; Li, L.; Tian, Z.; Zhang, X.; Chen, L. Heterogeneous single-cluster catalysts (Mn3, Fe3, Co3, and Mo3) supported on nitrogen-doped graphene for robust electrochemical nitrogen reduction. J. Energy Chem. 2021, 54, 612-619.
doi: 10.1016/j.jechem.2020.06.048
Cui, C. N.; Zhang, H. C.; Luo, Z. X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: a theoretical study of the atomically precise active-site mechanism. Nano Res. 2020, 13, 2280-2288.
doi: 10.1007/s12274-020-2847-0
Zhang, H. C.; Cui, C. N.; Luo, Z. X. MoS2-supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia. J. Phys. Chem. C 2020, 124, 6260-6266.
doi: 10.1021/acs.jpcc.0c00486
Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.
doi: 10.1038/s41467-020-18080-w
Ma, X. L.; Yang, Y.; Xu, L. M.; Xiao, H.; Yao, W. Z.; Li, J. Theoretical investigation on hydrogenation of dinitrogen triggered by singly dispersed bimetallic sites. J. Mater. Chem. A 2022, 10, 6146-6152.
doi: 10.1039/D1TA08350C
Luo, Y.; Li, M.; Dai, Y.; Zhao, R.; Jiang, F.; Wang, S.; Huang, Y. Transition metal-modified Co4 clusters supported on graphdiyne as an effective nitrogen reduction reaction electrocatalyst. Inorg. Chem. 2021, 60, 18251-18259.
doi: 10.1021/acs.inorgchem.1c02880
Wang, Q.; Pan, J.; Guo, J.; Hansen, H. A.; Xie, H.; Jiang, L.; Hua, L.; Li, H.; Guan, Y.; Wang, P. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 2021, 4, 959-967.
doi: 10.1038/s41929-021-00698-8
Liu, C.; Wang, Q.; Guo, J.; Vegge, T.; Chen, P.; Hansen, H. A. Formation of a complex active center by Ba2RuH6 for nondissociative dinitrogen activation and ammonia formation. ACS Catal. 2022, 12, 4194-4202.
doi: 10.1021/acscatal.2c00180
Wang, X. Y.; Li, L. L.; Fang, Z. P.; Zhang, Y. F.; Ni, J.; Lin, B. Y.; Zheng, L. R.; Au, C. -T.; Jiang, L. L. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism. ACS Catal. 2020, 10, 9504-9514.
doi: 10.1021/acscatal.0c00549
Wang, X. Y.; Peng, X. B.; Chen, W.; Liu, G. Y.; Zheng, A. M.; Zheng, L. R.; Ni, J.; Au, C. T.; Jiang, L. L. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Nat. Commun. 2020, 11, 653.
doi: 10.1038/s41467-020-14287-z
Hu, H. S.; Xu, X.; Xu, C.; Li. J. Recent progresses in experimental and theoretical studies of actinide clusters. Chin. J. Struct. Chem. 2020, 39, 1201-1212.
Liu, J. C.; Xiao, H.; Zhao, X. K.; Zhang, N. N.; Liu, Y.; Xing, D. H.; Yu, X. H.; Hu, H. S.; Li, J. Computational prediction of graphdiyne-supported three-atom single-cluster catalysts. CCS Chem. 2022, DOI: 10.31635/ccschem.022.202201796.
doi: 10.31635/ccschem.022.202201796
Yingzi Han , Yihuang Jiang , Jing Jeanne Yang , Shuichao Lin , Zichao Tang , Lansun Zheng . Tuning Solvent Composition to Enhance the Stability of Metal Clusters in Mass Spectrometry. Chinese Journal of Structural Chemistry, 2022, 41(4): 2204034-2204039. doi: 10.14102/j.cnki.0254-5861.2022-0032
Chunngai Hui , Shiping Wang , Chunfa Xu . Dinitrogen extrusion from diazene in organic synthesis. Chinese Chemical Letters, 2022, 33(8): 3695-3700. doi: 10.1016/j.cclet.2022.03.073
Hui Hui ZENG , Jian WANG Rong , Chang LI , Kui WANG . STUDY ON BINDING MODE OF CISPLATIN TO F-ACTIN ON THE BASIS OF LIGAND-METAL CHARGE TRANSFER SPECTRA. Chinese Chemical Letters, 1992, 3(1): 71-74.
Xusheng Gao , Liduo Zhao , Meijuan Ding , Xiaozu Wang , Lu Zhai , Xiaoming Ren . Insight understanding into influence of binding mode of carboxylate with metal ion on ligand-centered luminescence properties in Pb-based coordination polymers. Chinese Chemical Letters, 2021, 32(8): 2423-2426. doi: 10.1016/j.cclet.2021.01.015
Ding Sheng YU , Shi Zhi CHEN , Shu Ke JIAO . THE MECHANISM OF SURFACE METALLIZATION OF POLYVINYL ALCOHOL COMPLEX METAL CHELATE FILMS. Chinese Chemical Letters, 1993, 4(9): 831-832.
Yuan Qi YIN , Hong Sui SUN , Zhuan Yun ZHAO . SYNTHESES OF TETRAHEDRAL METAL CLUSTER COMPOUNDS. Chinese Chemical Letters, 1992, 3(7): 551-554.
Xin Hai , Yuwei Li , Kaixin Yu , Shuzhen Yue , Yuanfang Li , Weiling Song , Sai Bi , Xueji Zhang . Synergistic in-situ growth of silver nanoparticles with nanozyme activity for dual-mode biosensing and cancer theranostics. Chinese Chemical Letters, 2021, 32(3): 1215-1219. doi: 10.1016/j.cclet.2020.09.013
Xia Yang , Ya-Jun Zhou , Pei He , Yun-Hua Guo , Cong-Jun Liu , Ke-Wu Yang . Activation free energy of Zn(Ⅱ), Co(Ⅱ) binding to metallo-β-lactamase ImiS. Chinese Chemical Letters, 2014, 25(10): 1323-1326. doi: 10.1016/j.cclet.2014.06.024
WU Nan-Nan , CHEN Chang-Neng , HUANG De-Guang . Activation of Nitromethane to Cyanide by a Mononuclear Cu(Ⅱ) Complex. Chinese Journal of Structural Chemistry, 2014, 33(11): 1643-1648. doi: 10.14102/j.cnki.0254-5861.2011-0352
Li-Jia Yu , Wei Gai , Qian-Fan Yang , Jun-Feng Xiang , Hong-Xia Sun , Qian Li , Li-Xia Wang , Ai-Jiao Guan , Ya-Lin Tang . Recognizing parallel-stranded G-quadruplex by cyanine dye dimer based on dual-site binding mode. Chinese Chemical Letters, 2015, 26(6): 705-708. doi: 10.1016/j.cclet.2015.02.002
Kai LIU , Yong GUO , Jian XU , Shi Jun SHAO , Sheng Xiang JIANG . New Subsidiary Interaction Mode of Counteranions with the Periphery Cavity of Calix[4]pyrroles Binding with the Anion Subunits. Chinese Chemical Letters, 2006, 17(3): 387-390.
Ben Ni DU , Hong Wei GAO , Zheng Yu ZHOU , Wei Chao ZHANG . Analysis of Vibration Mode for H2+F→HF+H Reaction Mechanism:Density functional Theory Calculation. Chinese Chemical Letters, 2001, 12(8): 723-726.
Xiang Wei , Huang Mingjie , Wang Yifan , Wu Xiaohui , Zhang Fugang , Li Dan , Zhou Tao . New insight in the O2 activation by nano Fe/Cu bimetals: The synergistic role of Cu(0) and Fe(Ⅱ). Chinese Chemical Letters, 2020, 31(10): 2831-2834. doi: 10.1016/j.cclet.2020.08.006
Conghui Wang , Ying-Ming Zhang , Haoran Li , Jin Zhang , Yu Zhou , Guoxing Liu , Xiufang Xu , Yu Liu . Synergistic activation of photoswitchable supramolecular assembly based on sulfonated crown ether and dithienylethene derivative. Chinese Chemical Letters, 2022, 33(5): 2447-2450. doi: 10.1016/j.cclet.2021.09.106
Di RAO , Jun-Bo HE , Jiang-Tao FENG , Wei-Nong ZHANG , Meng CAI , Hong-Wu HE . Homology Modeling, Molecular Docking, and Molecular Dynamic Simulation of the Binding Mode of PA-1 and Botrytis cinerea PDHc-E1. Chinese Journal of Structural Chemistry, 2022, 41(3): 2203227-2203234. doi: 10.14102/j.cnki.0254-5861.2011-3335
Bin SONG , Qi Yan ZHANG , Yun Ti CHEN , R. K. MURMANN . THE STUDY ON THE KINETICS AND MECHANISM OF THE REACTIONS OF METAL IONS WITH PnAO. Chinese Chemical Letters, 1991, 2(7): 569-570.
Qin WEI , Dan WU , Bin DU , Qing Yu OU . Studies on the Phenylfluorone-Mo(VI) Complex as Interacting Mode Spectroscopic Probe of Protein in OP Microemulsion Medium. Chinese Chemical Letters, 2004, 15(6): 667-670.
Hao-Miao LI , Jia-Le ZHAO , Deng-Meng SONG , Qing SHI , Ning WANG , Jun LI , Wen-Hua XU . Unusual Coordination Mode of Tetradentate Diiminedioxime Ligand in a Mononickel(Ⅱ) Complex: Synthesis, Characterization, and Computational Study. Chinese Journal of Structural Chemistry, 2021, 40(6): 746-752. doi: 10.14102/j.cnki.0254–5861.2011–3002
LIU Rui-Xue , LAI De-Lin , DENG Qian-Jun , CHENG Feng-Jie , FAN Lan-Qiong , LIU Yan-Cheng . Synthesis, Crystal Structure and DNA Binding of Copper(Ⅱ) Complex of Penciclovir. Chinese Journal of Inorganic Chemistry, 2019, 35(1): 125-132. doi: 10.11862/CJIC.2019.013
Yun-Zhu LIU , Xiao-Na LI , Sheng-Gui HE . Activation of Carbon Dioxide by Gas-phase Metal Species. Chinese Journal of Structural Chemistry, 2021, 40(10): 1385-1403. doi: 10.14102/j.cnki.0254–5861.2011–3081