Citation: Xu-Feng Luo, Jie He, Yang Wang, Dai Hong, Zheng-Guang Wu. Research Advances in Helicene Structure-Based Chiral Luminescent Materials and Their Circularly Polarized Electroluminescence[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 2212070-2212079. doi: 10.14102/j.cnki.0254-5861.2022-0196 shu

Research Advances in Helicene Structure-Based Chiral Luminescent Materials and Their Circularly Polarized Electroluminescence

  • Author Bio: Xu-Feng Luo received his Ph.D. degree in 2022 at Nanjing University under the supervisor of Professor You-Xuan Zheng from 2017 to 2022. Now he joined the Ningbo University of Technology. His research focuses on MR-TADF materials, phosphorescence metal complexes and CPL materials and their applications in optoelectronic device
    Jie He received his B.S. degree at the Nantong University in 2019. He is currently an M.S. candidate in the School of Chemistry and Chemical Engineering, Nantong University, supervised by Prof
    Yang Wang obtained his B.S. and M.S. degree in chemistry from Jiangsu Normal University under the supervisor of Prof. Feng Shi in 2016. Then, he joined professor Wen-Hua Zheng's group and received his Ph.D. from Nanjing University in 2019. He is currently a lecturer at the School of Chemistry and Chemical Engineering, Nantong University, where his research focuses on the construction of chiral nitrogen heterocycles via asymmetric oxidative strategies
    Hong Dai received his PhD degree from Nankai University under the supervision of Prof. Jianxin Fang in 2009. He joined Nantong University in 2009, and was promoted as Professor in 2018. Currently, his research is focused on the design and synthesis of chiral heterocycles for pesticide molecules and photoelectric materials
    Zheng-Guang Wu, Professor, received his Ph.D. degree in Organic Chemistry in 2017 at Nanjing University under the supervisor of Prof. Yi Pan and You-Xuan Zheng. From 2017 to 2019, he worked as a postdoctoral fellow in State Key Laboratory of Coordination Chemistry in Nanjing University. He joined Nantong University in 2020 and his research interest focuses on the design and synthesis of inorganic and organic functional materials, chiral luminescent materials and their applications in optoelectronic device
  • # These authors contribute equally to this work.
  • Received Date: 14 September 2022
    Accepted Date: 4 October 2022
    Available Online: 12 October 2022


  • Benefited from direct generation of circularly polarized (CP) emission with tunable colors, high efficiencies and facile device architectures, CP organic light-emitting diodes (CP-OLEDs) have attracted great attention and are expected to meet industrial applications. Particularly, CP electroluminescence (CPEL) originated from CP-OLEDs has wide potential applications in 3D displays, optical information storage, quantum communication, and biological sensors. The diverse design strategies of chiral luminescent materials for CP-OLEDs, including small organic emitters, lanthanide and transition-metal complexes and conjugated polymers, have been extensively explored. Helicene with twisted extended π-conjugated molecular structure could exhibit special helical chirality and excellent circularly polarized luminescence properties, which has been employed as the ingenious chirality core for constructing efficient chiral luminescent materials. In addition, significant improvements have been made in terms of CP photoluminescence research, however, the development of CPEL with more application prospects in optoelectronic technology still lags behind. In this review, we systematically summarize the recent advances in chiral luminescent materials based on helicene structure and their CPEL properties, including helicene-based chiral fluorescence molecules, transition metal complexes and thermally activated delayed fluorescence molecules, and discuss current challenges and future perspectives for this hot research field. We believe this progress report will provide a promising perspective of OLEDs based on helicene emitters with CPEL properties for extensive researchers, including chemical, physical and material scientists in different disciplinary fields and attract them to this rapidly developing field.
  • 加载中
    1. [1]

      Huck, N. P. M.; Jager, W. F.; Lange, B. D.; Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 1996, 273, 1686-1688.  doi: 10.1126/science.273.5282.1686

    2. [2]

      Cao, Z.; Wang, B.; Zhu, F.; Hao, A.; Xing, P. Solvent-processed circularly polarized luminescence in light-harvesting coassemblies. ACS Appl. Mater. Interfaces 2020, 12, 34470-34478.  doi: 10.1021/acsami.0c10559

    3. [3]

      Fan, H.; Li, K.; Tu, T.; Zhu, X.; Zhang, L.; Liu, M. ATP-induced emergent circularly polarized luminescence and encryption. Angew. Chem. Int. Ed. 2022, 61, e202200727.

    4. [4]

      MacKenzie, L. E.; Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 2021, 5, 109-124.

    5. [5]

      Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331-1343.  doi: 10.1039/C9CS00680J

    6. [6]

      Li, X.; Xie, Y.; Li, Z. The progress of circularly polarized luminescence in chiral purely organic materials. Adv. Photonics Res. 2021, 2, 2000136.  doi: 10.1002/adpr.202000136

    7. [7]

      Liu, L.; Yang, Y.; Wei, Z. Chiral organic optoelectronic materials and circularly polarized light luminescence and detection. Acta Chim. Sinica 2022, 80, 970-992.  doi: 10.6023/A22030123

    8. [8]

      Ma, J. L.; Peng, Q.; Zhao, C. H. Circularly polarized luminescence switching in small organic molecules. Chem. Eur. J. 2019, 25, 15441-15454.  doi: 10.1002/chem.201903252

    9. [9]

      Luo, X. Y.; Pan, M. Metal-organic materials with circularly polarized luminescence. Coordin. Chem. Rev. 2022, 468, 214640.  doi: 10.1016/j.ccr.2022.214640

    10. [10]

      Zhang, Y.; Yu, S.; Han, B.; Zhou, Y.; Zhang, X.; Gao, X.; Tang, Z. Circularly polarized luminescence in chiral materials. Matter 2022, 5, 837-875.  doi: 10.1016/j.matt.2022.01.001

    11. [11]

      Hasegawa, M.; Nojima, Y.; Mazaki, Y. Circularly polarized luminescence in chiral π-conjugated macrocycles. ChemPhotoChem 2021, 5, 1042-1058.  doi: 10.1002/cptc.202100162

    12. [12]

      Gao, J. X.; Zhang, W. Y.; Wu, Z. G.; Zheng, Y, X.; Fu, D. W. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J. Am. Chem. Soc. 2020, 142, 4756-4761.  doi: 10.1021/jacs.9b13291

    13. [13]

      Chen, Y. Circularly polarized luminescence based on small organic fluorophores. Mater. Today. Chem. 2022, 23, 100651.  doi: 10.1016/j.mtchem.2021.100651

    14. [14]

      Ni, B.; Li, Y.; Liu, W.; Li, B.; Li, H.; Yang, Y. Circularly polarized luminescence from structurally coloured polymer films. Chem. Commun. 2021, 57, 2796-2799.  doi: 10.1039/D1CC00201E

    15. [15]

      Liang, X.; Liu, T. T.; Yan, Z. P.; Zhou, Y.; Su, J.; Luo, X. F.; Wu, Z. G.; Wang, Y.; Zheng, Y. X.; Zuo, J. L. Organic room-temperature phosphorescence with strong circularly polarized luminescence based on paracyclophanes. Angew. Chem. Int. Ed. 2019, 58, 17220-17225.  doi: 10.1002/anie.201909076

    16. [16]

      Roose, J.; Tang, B. Z.; Wong, K. S. Circularly-polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small 2016, 12, 6495-6512.  doi: 10.1002/smll.201601455

    17. [17]

      Chen, N.; Yan, B. Recent theoretical and experimental progress in circularly polarized luminescence of small organic molecules. Molecules 2018, 23, 3376.  doi: 10.3390/molecules23123376

    18. [18]

      Li, M.; Lin, W. B.; Fang, L.; Chen, C. F. Recent progress on circularly polarized luminescence of chiral organic small molecules. Acta Chim. Sinica 2017, 75, 1150-1163.  doi: 10.6023/A17090440

    19. [19]

      Han, J.; Guo, S.; Lu, H.; Liu, S.; Zhao, Q.; Huang, W. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Optical Mater. 2018, 6, 1800538.  doi: 10.1002/adom.201800538

    20. [20]

      Zhou, L.; Xie, G.; Ni, F.; Yang, C. Emerging circularly polarized thermally activated delayed fluorescence materials and devices. Appl. Phys. Lett. 2020, 117, 130502.  doi: 10.1063/5.0021127

    21. [21]

      Frédéric, L.; Desmarchelier, A.; Favereau, L.; Pieters, G. Designs and applications of circularly polarized thermally activated delayed fluorescence molecules. Adv. Funct. Mater. 2021, 31, 2010281.  doi: 10.1002/adfm.202010281

    22. [22]

      Zhang, Y. P.; Zheng, Y. X. Frontiers in chiral phosphorescent complexes for circularly polarized electroluminescence. Dalton Trans. 2022, 51, 9966-9970.  doi: 10.1039/D2DT01582J

    23. [23]

      Peeters, E.; Christiaans. M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H. P. J. M.; Meijer, E. W. Circularly polarized electroluminescence from a polymer light-emitting diode. J. Am. Chem. Soc. 1997, 119, 9909-9910.  doi: 10.1021/ja971912c

    24. [24]

      Liang, X.; Tu, Z. L.; Zheng, Y. X. Thermally activated delayed fluorescence materials: towards realization of high efficiency through strategic small molecular design. Chem. Eur. J. 2019, 25, 5623-5642.  doi: 10.1002/chem.201805952

    25. [25]

      Wong, M. Y.; Zysman-Colman, E. Purely or ganic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 2017, 29, 1605444.  doi: 10.1002/adma.201605444

    26. [26]

      Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 2014, 26, 7931-7958.  doi: 10.1002/adma.201402532

    27. [27]

      Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46, 915-1016.  doi: 10.1039/C6CS00368K

    28. [28]

      Im, Y.; Kim, M.; Cho, Y. J.; Seo, J. A.; Yook, K. S.; Lee, J. Y. Molecular design strategy of organic thermally activated delayed fluorescence emitters. Chem. Mater. 2017, 29, 1946-1963.  doi: 10.1021/acs.chemmater.6b05324

    29. [29]

      Jeon, S. K.; Lee, H. L.; Yook, K. S.; Lee, J. Y. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material. Adv. Mater. 2019, 31, 1803524.  doi: 10.1002/adma.201803524

    30. [30]

      Kim, K. H.; Kim, J. J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater. 2018, 30, 1705600.  doi: 10.1002/adma.201705600

    31. [31]

      Zinna, F.; Giovanella, U.; Bari, L. D. Highly circularly polarized electroluminescence from a chiral europium complex. Adv. Mater. 2015, 27, 1791-1795.  doi: 10.1002/adma.201404891

    32. [32]

      Zinna, F.; Pasini, M.; Galeotti, F.; Botta, C.; Bari, L. D.; Giovanella, U. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence. Adv. Funct. Mater. 2017, 27, 1603719.  doi: 10.1002/adfm.201603719

    33. [33]

      Li, M.; Li, S. H.; Zhang, D.; Cai, M.; Duan, L.; Fung, M. K.; Chen, C. F. Stable enantiomers displaying thermally activated delayed fluorescence: efficient OLEDs with circularly polarized electroluminescence. Angew. Chem. Int. Ed. 2018, 57, 2889-2893.  doi: 10.1002/anie.201800198

    34. [34]

      Li, T. Y.; Jing, Y. M.; Liu, X.; Zhao, Y.; Shi, L.; Tang, Z.; Zheng, Y. X.; Zuo, J. L. Circularly polarized phosphorescent photoluminescence and electroluminescence of iridium complexes. Sci. Rep. 2015, 5, 14912.  doi: 10.1038/srep14912

    35. [35]

      Yang, S. Y.; Wang, Y. K.; Peng, C. C.; Wu, Z. G.; Yuan, S.; Yu, Y. J.; Li, H.; Wang, T. T.; Li, H. C.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S. Circularly polarized thermally activated delayed fluorescence emitters in through-space charge transfer on asymmetric spiro skeletons. J. Am. Chem. Soc. 2020, 142, 17756-17765.  doi: 10.1021/jacs.0c08980

    36. [36]

      Chen, Y.; Li, X.; Li, N.; Quan, Y.; Cheng, Y.; Tang, Y. Strong circularly polarized electroluminescence based on chiral salen-Zn(Ⅱ) complex monomer chromophores. Mater. Chem. Front. 2019, 3, 867-873.  doi: 10.1039/C9QM00039A

    37. [37]

      Yang, Y.; Li, N.; Miao, J.; Cao, X.; Ying, A.; Pan, K.; Lv, X.; Ni, F.; Huang, Z.; Gong, S.; Yang, C. Chiral multi-resonance TADF emitters exhibiting narrowband circularly polarized electroluminescence with an EQE of 37.2%. Angew. Chem. Int. Ed. 2022, 61, e202202227.

    38. [38]

      Zhang, D. W.; Teng, J. M.; Wang, Y. F.; Han, X. N.; Li, M.; Chen, C. F. D-π*-A type planar chiral TADF materials for efficient circularly polarized electroluminescence. Mater. Horiz. 2021, 8, 3417-3423.  doi: 10.1039/D1MH01404H

    39. [39]

      Wu, Z. G.; Han, H. B.; Yan, Z. P.; Luo, X. F.; Wang, Y.; Zheng, Y. X.; Zuo, J. L.; Pan, Y. Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 2019, 1900524.

    40. [40]

      Liang, Z. P.; Tang, R.; Qiu, Y. C.; Wang, Y.; Lu, H.; Wu, Z. G. Construction and properties of octahydrobinaphthol-based chiral luminescent materials with large steric hindrance. Acta Chim. Sinica 2021, 79, 1401-1408.  doi: 10.6023/A21070355

    41. [41]

      Shen, Y.; Chen, C. F. Helicenes: synthesis and applications. Chem. Rev. 2012, 112, 1463-1535.  doi: 10.1021/cr200087r

    42. [42]

      Zhao, W. L.; Li, M.; Lu, H. Y.; Chen, C. F. Advances in helicene derivatives with circularly polarized luminescence. Chem. Commun. 2019, 55, 13793-13803.  doi: 10.1039/C9CC06861A

    43. [43]

      Shen, C.; Gan, F.; Zhang, G.; Ding, Y.; Wang, J.; Wang, R.; Crassous, J.; Qiu, H. Helicene-derived aggregation-induced emission conjugates with highly tunable circularly polarized luminescence. Mater. Chem. Front. 2020, 4, 837-844.  doi: 10.1039/C9QM00652D

    44. [44]

      Zhao, Z. H.; Liang, X.; He, M. X.; Zhang, M. Y.; Zhao, C. H. Triarylborane-based [5]helicenes with full-color circularly polarized luminescence. Org. Lett. 2019, 21, 9569-9573.  doi: 10.1021/acs.orglett.9b03734

    45. [45]

      Zhu, Y.; Xia, Z.; Cai, Z.; Yuan, Z.; Jiang, N.; Li, T.; Wang, Y.; Guo, X.; Li, Z.; Ma, S.; Zhong, D.; Li, Y.; Wang, J. Synthesis and characterization of hexapole[7]helicene, a circularly twisted chiral nanographene. J. Am. Chem. Soc. 2018, 140, 4222-4226.  doi: 10.1021/jacs.8b01447

    46. [46]

      Zhang, S.; Liu, X.; Li, C.; Li, L.; Song, J.; Shi, J.; Morton, M.; Rajca, S.; Rajca, A.; Wang, H. Thiophene-Based Double Helices: Syntheses, X-ray Structures, and Chiroptical Properties. J. Am. Chem. Soc. 2016, 138, 10002-10010.  doi: 10.1021/jacs.6b05709

    47. [47]

      Li, J. K.; Chen, X. Y.; Guo, Y. L.; Wang, X. C.; Sue, A. C. H.; Cao, X. Y.; Wang, X. Y. B, N-embedded double hetero[7]helicenes with strong chiroptical responses in the visible light region. J. Am. Chem. Soc. 2021, 143, 17958-17963.  doi: 10.1021/jacs.1c09058

    48. [48]

      Yang, Y.; Correa da Costa, R.; Smilgies, D. M.; Campbell, A. J.; Fuchter, M. J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small molecule dopant. Adv. Mater. 2013, 25, 2624-2628.  doi: 10.1002/adma.201204961

    49. [49]

      Wan, L.; Wade, J.; Salerno, F.; Arteaga, O.; Laidlaw, B.; Wang, X.; Penfold, T.; Fuchter, M. J.; Campbell, A. J. Inverting the handedness of circularly polarized luminescence from light-emitting polymers using film thickness. ACS Nano 2019, 13, 8099-8105.  doi: 10.1021/acsnano.9b02940

    50. [50]

      Wan, L.; Wade, J.; Shi, X.; Xu, S.; Fuchter, M. J.; Campbell, A. J. Highly efficient inverted circularly polarized organic light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 39471-39478.  doi: 10.1021/acsami.0c09139

    51. [51]

      Wan, L.; Wade, J.; Wang, X.; Campbell, A. J.; Fuchter, M. J. Engineering the sign of circularly polarized emission in achiral polymer-chiral small molecule blends as a function of blend ratio. J. Mater. Chem. C 2022, 10, 5168-5172.  doi: 10.1039/D1TC05403A

    52. [52]

      Li, M.; Wang, Y. F.; Zhang, D. W.; Zhang, D.; Hu, Z. Q.; Duan, L.; Chen, C, F. Thermally activated delayed fluorescence material-sensitized helicene enantiomer-based OLEDs: a new strategy for improving the efficiency of circularly polarized electroluminescence. Sci China Mater. 2021, 64, 899-908.  doi: 10.1007/s40843-020-1496-7

    53. [53]

      Dhbaibi, K.; Abella, L.; Meunier-Della-Gatta, S.; Roisnel, T.; Vanthuyne, N.; Jamoussi, B.; Pieters, G.; Racine, B.; Quesnel, E.; Autschbach, J.; Crassous, J.; Favereau, L. Achieving high circularly polarized luminescence with push-pull helicenic systems: from rationalized design to top-emission CP-OLED applications. Chem. Sci. 2021, 12, 5522-5533.  doi: 10.1039/D0SC06895K

    54. [54]

      Hellou, N.; Srebro-Hooper, M.; Favereau, L.; Zinna, F.; Caytan, E.; Toupet, L.; Dorcet, V.; Jean, M.; Vanthuyne, N.; Williams, J. A. G.; Bari, L. D.; Autschbach, J.; Crassous, J. Enantiopure cycloiridiated complexes bearing a pentahelicenic N-heterocyclic carbene and displaying long-lived circularly polarized phosphorescence. Angew. Chem. Int. Ed. 2017, 56, 8236-8239.  doi: 10.1002/anie.201704263

    55. [55]

      Brandt, J. R.; Wang, X.; Yang, Y.; Campbell, A. J.; Fuchter, M. J. Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a platinahelicene. J. Am. Chem. Soc. 2016, 138, 9743-9746.  doi: 10.1021/jacs.6b02463

    56. [56]

      Yan, Z. P.; Luo, X. F.; Liu, W. Q.; Wu, Z. G.; Laing, X.; Liao, K.; Wang, Y.; Zheng, Y. X.; Zhou, L.; Zuo, J. L.; Pan, Y.; Zhang, H. Configurationally stable platinahelicene enantiomers for efficient circularly polarized phosphorescent organic light-emitting diodes. Chem. Eur. J. 2019, 25, 5672-5676.  doi: 10.1002/chem.201900955

    57. [57]

      Yan, Z. P.; Luo, X. F.; Liao, K.; Zheng, Y. X.; Zuo, J. L. Rational design of the platinahelicene enantiomers for deep-red circularly polarized organic light-emitting diodes. Front. Chem. 2020, 8, 501.  doi: 10.3389/fchem.2020.00501

    58. [58]

      Yuan, L.; Liu, T. T.; Mao, M. X.; Luo, X. F.; Zheng, Y. X. Configurationally stable helical tetradentate Pt(Ⅱ) complexes for organic light-emitting diodes with circularly polarized electroluminescence. J. Mater. Chem. C 2021, 9, 14669-14674.  doi: 10.1039/D1TC03351D

    59. [59]

      Yuan, L.; Ding, Q. J.; Tu, Z. L.; Liao, X. J.; Luo, X. F.; Yan, Z. P.; Wu, Z. G.; Zheng, Y. X. Molecular self-induced configuration for improving dissymmetry factors in tetradentate platinum(Ⅱ) enantiomers cycloaddition. Chin. Chem. Lett. 2022, 33, 1459-1462.  doi: 10.1016/j.cclet.2021.08.104

    60. [60]

      Wu, X.; Huang, J. W.; Su, B. K.; Wang, S.; Yuan, L.; Zheng, W. Q.; Zhang, H.; Zheng, Y. X.; Zhu, W.; Chou, P. T. Fabrication of circularly polarized MR-TADF emitters with asymmetrical peripheral-lock enhancing helical B/N-doped nanographenes. Adv. Mater. 2022, 34, 2105080.  doi: 10.1002/adma.202105080

    61. [61]

      Yang, W.; Li, N.; Miao, J.; Zhan, L.; Gong, S.; Huang, Z.; Yang, C. Simple double hetero[5]helicenes realize highly efficient and narrowband circularly polarized organic light-emitting diodes. CCS Chem. 2022, 4, 3463-3471.  doi: 10.31635/ccschem.022.202101661

    62. [62]

      Yang, S. Y.; Zou, S. N.; Kong, F. C.; Liao, X. J.; Qu, Y. K.; Feng, Z. Q.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S. A narrowband blue circularly polarized thermally activated delayed fluorescence emitter with a heterohelicene structure. Chem. Commun. 2021, 57, 11041-11044.  doi: 10.1039/D1CC04405B

    63. [63]

      Yang, S. Y.; Tian, Q. S.; Liao, X. J.; Wu, Z. G.; Shen, W. S.; Yu, Y. J.; Feng, Z. Q.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S. Efficient circularly polarized thermally activated delayed fluorescence hetero-[4]helicene with carbonyl-/sulfone-bridged triarylamine structures. J. Mater. Chem. C 2022, 10, 4393-4401.  doi: 10.1039/D1TC06125A

    64. [64]

      Lu, G.; Wu, Z. G.; Wu, R.; Cao, X.; Zhou, L.; Zheng, Y. X.; Yang, C. Semitransparent circularly polarized phosphorescent organic light-emitting diodes with external quantum efficiency over 30% and dissymmetry factor close to 10-2. Adv. Funct. Mater. 2021, 31, 2102898.  doi: 10.1002/adfm.202102898

  • 加载中
    1. [1]

      Rui ZhaiYindi ZhuLimei ChangZhigang GuJian Zhang . Layer-by-Layer Grafting Dye on Chiral MOF Thin Films for Circularly Polarized Luminescence. Chinese Journal of Structural Chemistry, 2022, 41(9): 2209074-2209079. doi: 10.14102/j.cnki.0254-5861.2022-0023

    2. [2]

      Pei WANGChun-Hua HUANGXu-Lin CHENCan-Zhong LU . A Tetranuclear Cuprous Halide Cluster Exhibiting Efficient Blue Thermally Activated Delayed Fluorescence. Chinese Journal of Structural Chemistry, 2021, 40(11): 1489-1495. doi: 10.14102/j.cnki.0254-5861.2011-3197

    3. [3]

      WANG Li-LiYANG Qian-YingHAN Li-ZhiZHANG Xiao-PengCHEN Xin-HanSHI Zai-Feng . Syntheses and Spectroscopic Properties of Chiral Dinuclear Eu(Ⅲ) Complexes. Chinese Journal of Inorganic Chemistry, 2020, 36(2): 352-360. doi: 10.11862/CJIC.2020.020

    4. [4]

      Jiayi LiangChunru WangTaishan Wang . Studies on the Luminescence Property of Yttrium-Based Metallofullerenes. Chinese Journal of Structural Chemistry, 2022, 41(9): 2209001-2209007. doi: 10.14102/j.cnki.0254-5861.2022-0105

    5. [5]

      Zhang LiangLi MengGao QingyuChen Chuanfeng . Synthesis and Properties of New Organic Luminescent Materials Based on Halogen-Substituted Phthalimides. Chinese Journal of Organic Chemistry, 2020, 40(2): 516-520. doi: 10.6023/cjoc201909012

    6. [6]

      Yiran XiaAiyou HaoPengyao Xing . Fmoc-protected amino acids as luminescent and circularly polarized luminescence materials based on charge transfer interaction. Chinese Chemical Letters, 2022, 33(11): 4918-4923. doi: 10.1016/j.cclet.2022.02.077

    7. [7]

      Chaoyang WangTao JiangXiang Ma . Circularly polarized luminescence induced by excimer based on pyrene-modified binaphthol. Chinese Chemical Letters, 2020, 31(11): 2921-2924. doi: 10.1016/j.cclet.2020.03.021

    8. [8]

      Shengjie JiangShujuan ZhouYing ChenHongyu GuoFafu Yang . Circularly polarized luminescence based on cholesterol-tetraphenylethylene-perylene liquid crystal. Chinese Chemical Letters, 2022, 33(5): 2442-2446. doi: 10.1016/j.cclet.2021.10.050

    9. [9]

      Guiyang XiaLingyan WangHuan XiaYuzhuo WuYanan WangHaiyu HuSheng Lin . Circularly polarized luminescence of talarolactones (+)/(−)-A and (+)/(−)-C: The application of CPL-calculation in stereochemical assignment. Chinese Chemical Letters, 2022, 33(9): 4253-4256. doi: 10.1016/j.cclet.2022.03.032

    10. [10]

      Wen-Si YUChun-Hua HUANGXi-He HUANG . Synthesis, Structure and Photophysical Properties of a Dinuclear Copper(I) Complex Based on Phosphino-pyridine and Diphosphine Mixed-ligands. Chinese Journal of Structural Chemistry, 2021, 40(2): 175-181. doi: 10.14102/j.cnki.0254–5861.2011–2788

    11. [11]

      Wang HuiLv XiaopengMeng LingqiangWei XiaofangWang YingWang Pengfei . Novel thioxanthone host material with thermally activated delayed fluorescence for reduced efficiency roll-off of phosphorescent OLEDs. Chinese Chemical Letters, 2018, 29(3): 471-474. doi: 10.1016/j.cclet.2017.07.025

    12. [12]

      Li GangyuanYe HaoZhu FuchengGeng YanFan JianzhongMa JianpingAdachi ChihayaDong Yu-Bin . Luminescent Cu(Ⅰ) and Ag(Ⅰ) coordination polymers: Fast phosphorescence or thermally activated delayed fluorescence. Chinese Chemical Letters, 2019, 30(11): 1931-1934. doi: 10.1016/j.cclet.2019.08.006

    13. [13]

      Kai Jun LUO Ming Gui XIE Qing JIANG . Circularly Polarized Absorption Property of Tetra-4[4'-(2-methylbutoxy)benzoyloxy]phenyl Porphyrin by Introducing Optical Pendant Groups. Chinese Chemical Letters, 2003, 14(11): 1196-1198.

    14. [14]

      Xiaohui TianHaitao SunQisheng ZhangChihaya Adachi . Theoretical predication for transition energies of thermally activated delayed fluorescence molecules. Chinese Chemical Letters, 2016, 27(8): 1445-1452. doi: 10.1016/j.cclet.2016.07.017

    15. [15]

      Chen WenlongSong Fengling . Thermally activated delayed fluorescence molecules and their new applications aside from OLEDs. Chinese Chemical Letters, 2019, 30(10): 1717-1730. doi: 10.1016/j.cclet.2019.08.032

    16. [16]

      Dong-Er GANZhang ZHANGQiao-Hong LIWen-Mu LI . Oligo(aromatic ether sulfone)-F as a Nonlinear Polarized Polymeric Material: an Experiment and DFT Study. Chinese Journal of Structural Chemistry, 2021, 40(3): 383-393. doi: 10.14102/j.cnki.0254–5861.2011–2878

    17. [17]

      Yuan WenboYang HannanZhang MucanHu DieWan ShigangLi ZijingShi ChangshengSun NingTao YoutianHuang Wei . Molecular engineering on all ortho-linked carbazole/oxadiazole hybrids toward highly-efficient thermally activated delayed fluorescence materials in OLEDs. Chinese Chemical Letters, 2019, 30(11): 1955-1958. doi: 10.1016/j.cclet.2019.08.019

    18. [18]

      Jing SunJunsen JiaBo ZhaoJingjing YangManjeet SinghZhongfu AnHua WangBingshe XuWei Huang . A purely organic D-π-A-π-D emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED. Chinese Chemical Letters, 2021, 32(4): 1367-1371. doi: 10.1016/j.cclet.2020.09.060

    19. [19]

      Fang LeiLin WeibinShen YunChen Chuanfeng . Applications of Helicenes and Their Derivatives in Asymmetric Catalysis. Chinese Journal of Organic Chemistry, 2018, 38(3): 541-554. doi: 10.6023/cjoc201710028

    20. [20]

      Liu BingkangZhang YanliChen YuLiu XuguangZhang Lei . Synthesis, Characterization and Photophysical Properties of BN-[4]helicenes. Chinese Journal of Organic Chemistry, 2020, 40(9): 2879-2887. doi: 10.6023/cjoc202005005

  • PDF Downloads(0)
  • Abstract views(47)
  • HTML views(3)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint