Citation: Ji-Chao Wang, Xiu Qiao, Weina Shi, Huiling Gao, Lingchen Guo. Enhanced Photothermal Selective Conversion of CO2 to CH4 in Water Vapor over Rod-Like Cu and N Co-Doped TiO2[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 2212033-2212042. doi: 10.14102/j.cnki.0254-5861.2022-0191 shu

Enhanced Photothermal Selective Conversion of CO2 to CH4 in Water Vapor over Rod-Like Cu and N Co-Doped TiO2

  • Corresponding author: Weina Shi, shiweina516@163.com Huiling Gao, mzfghl@hist.edu.cn
  • Received Date: 26 September 2022
    Accepted Date: 7 October 2022
    Available Online: 11 October 2022

Figures(10)

  • Enhancing catalytic efficiency and selectivity is critical issues for CO2 conversion. The rod-like Cu/N co-doped TiO2 samples (Cu/N-TiO2) were synthesized by the electrospinning-calcination method. The substitutional Cu and interstitial N doping not only enhanced visible-light absorption ability, but also formed the Ti(Ⅲ) sites. The obviously synergistic effect between the photocatalysis and thermalcatalysis appeared for CO2 conversion over the 8-Cu/N-TiO2 catalyst. After 9 h visible-light-illumination at 160 ℃, the CO, CH4 and O2 yields reached 49.7, 1455.1 and 2910.2 μmol/gcat, respectively. In the 7th cycling, the yields of two main CH4 and O2 products were slightly down by less than 11.5%, and the selectivity of CH4 product kept above 98%. Combined with the theoretical surface mode, Cu/N co-doping could promote the adsorption-ability for H2O and CO2 molecules and reduce activation-energy for CO2 conversion. Hence, the co-doping construction showed a great significance of designing efficient photothermal catalysts for the CO2 conversion application.
  • 加载中
    1. [1]

      Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.  doi: 10.1002/advs.201700194

    2. [2]

      Wu, J.; Liu, J.; Xia, W.; Ren, Y. -Y.; Wang, F. Advances on photocatalytic CO2 reduction based on CdS and CdSe nano-semiconductors. Acta Phys. -Chim. Sin. 2021, 37, 2008043.

    3. [3]

      Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Ultrathin layered catalyst for photocatalytic reduction of CO2. Acta Phys. -Chim. Sin. 2021, 37, 2005027.

    4. [4]

      Abdullah, H.; Khan, M. M. R.; Ong, H. R.; Yaakob, Z. Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview. J. CO2 Util. 2017, 22, 15-32.  doi: 10.1016/j.jcou.2017.08.004

    5. [5]

      Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372-7408.  doi: 10.1002/anie.201207199

    6. [6]

      Lu, N.; Zhang, M.; Jing, X.; Zhang, P.; Zhu, Y.; Zhang, Z. Electrospun semiconductor-based nano-heterostructures for photocatalytic energy conversion and environmental remediation: opportunities and challenges. Energy Environ. Mater. 2022, doi:10.1002/eem2.12338  doi: 10.1002/eem2.12338

    7. [7]

      Zeshan, M.; Bhatti, I. A.; Mohsin, M.; Iqbal, M.; Amjed, N.; Nisar, J.; AlMasoud, N.; Alomar, T. S. Remediation of pesticides using TiO2 based photocatalytic strategies: a review. Chemosphere 2022, 300, 134525.  doi: 10.1016/j.chemosphere.2022.134525

    8. [8]

      Kong, L.; Zhang, X.; Wang, C.; Wan, F.; Li, L. Synergic effects of CuxO electron transfer co-catalyst and valence band edge control over TiO2 for efficient visible-light photocatalysis. Chin. J. Catal. 2017, 38, 2120-2131.  doi: 10.1016/S1872-2067(17)62959-0

    9. [9]

      Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO2 reduction. Mater. Today Phys. 2020, 15, 100279.  doi: 10.1016/j.mtphys.2020.100279

    10. [10]

      Duan, S.; Wu, S.; Wang, L.; She, H.; Huang, J.; Wang, Q. Rod-shaped metal organic framework structured PCN-222(Cu)/TiO2 composites for efficient photocatalytic CO2 reduction. Acta Phys. -Chim. Sin. 2020, 36, 1905086.  doi: 10.3866/PKU.WHXB201905086

    11. [11]

      Ma, Y.; Qiu, B.; Zhang, J.; Xing, M. Vacancy engineering of ultrathin 2D materials for photocatalytic CO2 reduction. ChemNanoMat 2021, 7, 368-379.  doi: 10.1002/cnma.202100051

    12. [12]

      Pan, R.; Liu, J.; Zhang, J. Defect engineering in 2D photocatalytic materials for CO2 reduction. ChemNanoMat 2021, 7, 737-747.  doi: 10.1002/cnma.202100087

    13. [13]

      Li, Y.; Zhang, W.; Shen, X.; Peng, P.; Xiong, L.; Yu, Y. Octahedral Cu2O-modified TiO2 nanotube arrays for efficient photocatalytic reduction of CO2. Chin. J. Catal. 2015, 36, 2229-2236.  doi: 10.1016/S1872-2067(15)60991-3

    14. [14]

      Regonini, D.; Teloeken, A. C.; Alves, A. K.; Berutti, F. A.; Gajda-Schrantz, K.; Bergmann, C. P.; Graule, T.; Clemens, F. Electrospun TiO2 fiber composite photoelectrodes for water splitting. ACS Appl. Mater. Interfaces 2013, 5, 11747-11755.  doi: 10.1021/am403437q

    15. [15]

      He, Z.; He, H. Y. Synthesis and photocatalytic property of N-doped TiO2 nanorods and nanotubes with high nitrogen content. Appl. Surf. Sci. 2011, 258, 972-976.  doi: 10.1016/j.apsusc.2011.09.051

    16. [16]

      Feng, Y.; Wang, C.; Cui, P.; Li, C.; Zhang, B.; Gan, L.; Zhang, S.; Zhang, X.; Zhou, X.; Sun, Z.; Wang, K.; Duan, Y.; Li, H.; Zhou, K.; Huang, H.; Li, A.; Zhuang, C.; Wang, L.; Zhang, Z.; Han, X. Ultrahigh photocatalytic CO2 reduction efficiency and selectivity manipulation by single-tungsten-atom oxide at the atomic step of TiO2. Adv. Mater. 2022, 34, 2109074.  doi: 10.1002/adma.202109074

    17. [17]

      Cui, X.; Shi, F. Selective conversion of CO2 by single-site catalysts. Acta Phys. -Chim. Sin. 2021, 37, 2006080.

    18. [18]

      Johnson, D.; Qiao, Z.; Djire, A. Progress and challenges of carbon dioxide reduction reaction on transition metal based electrocatalysts. ACS Appl. Energy Mater. 2021, 4, 8661-8684.  doi: 10.1021/acsaem.1c01624

    19. [19]

      Zhang, M.; Cheng, G.; Wei, Y.; Wen, Z.; Chen, R.; Xiong, J.; Li, W.; Han, C.; Li, Z. Cuprous ion (Cu+) doping induced surface/interface engineering for enhancing the CO2 photoreduction capability of W18O49 nanowires. J. Colloid Interface Sci. 2020, 572, 306-317.  doi: 10.1016/j.jcis.2020.03.090

    20. [20]

      Ola, O.; Maroto-Valer, M. M. Copper based TiO2 honeycomb monoliths for CO2 photoreduction. Catal. Sci. Technol. 2014, 4, 1631-1637.  doi: 10.1039/C3CY00991B

    21. [21]

      Park, M.; Kwak, B. S.; Jo, S. W.; Kang, M. Effective CH4 production from CO2 photoreduction using TiO2/x mol% Cu-TiO2 double-layered films. Energy Convers. Manage. 2015, 103, 431-438.  doi: 10.1016/j.enconman.2015.06.029

    22. [22]

      Mathis, J. E.; Lieffers, J. J.; Mitra, C.; Reboredo, F. A.; Bi, Z.; Bridges, C. A.; Kidder, M. K.; Paranthaman, M. P. Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen. Ceram. Int. 2016, 42, 3556-3562.  doi: 10.1016/j.ceramint.2015.10.164

    23. [23]

      Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D. C.; Miotello, A. Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal., B 2015, 168-169, 333-341.

    24. [24]

      Isari, A. A.; Hayati, F.; Kakavandi, B.; Rostami, M.; Motevassel, M.; Dehghanifard, E. N. Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: an effective sono-photocatalysis process for pharmaceutical wastewaters treatment. Chem. Eng. J. 2020, 392, 123685.  doi: 10.1016/j.cej.2019.123685

    25. [25]

      Wang, S.; Yang, X. J.; Jiang, Q.; Lian, J. S. Enhanced optical absorption and photocatalytic activity of Cu/N-codoped TiO2 nanocrystals. Mater. Sci. Semicond. Process. 2014, 24, 247-253.  doi: 10.1016/j.mssp.2014.03.029

    26. [26]

      He, Z. Q.; Jiang L. X.; Han J.; Wen, L. N.; Chen, J. M.; Song, S. Activity and selectivity of Cu and Ni doped TiO2 in the photocatalytic reduction of CO2 with H2O under UV-light irradiation. Asian J. Chem. 2014, 26, 4759-4766.  doi: 10.14233/ajchem.2014.16199

    27. [27]

      Sun, M.; Zhao, B.; Chen, F.; Liu, C.; Lu, S.; Yu, Y.; Zhang, B. Thermally-assisted photocatalytic CO2 reduction to fuels. Chem. Eng. J. 2021, 408, 127280.  doi: 10.1016/j.cej.2020.127280

    28. [28]

      Li, Z.; Zhang, L.; Huang, W.; Xu, C.; Zhang, Y. Photothermal catalysis for selective CO2 reduction on the modified anatase TiO2 (101) surface. ACS Appl. Energy Mater. 2021, 4, 7702-7709.  doi: 10.1021/acsaem.1c01062

    29. [29]

      Xie, B.; Lovell, E.; Tan, T. H.; Jantarang, S.; Yu, M.; Scott, J.; Amal, R. Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J. Energy Chem. 2021, 59, 108-125.  doi: 10.1016/j.jechem.2020.11.005

    30. [30]

      Zhang, F.; Li, Y. -H.; Qi, M. -Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. -R.; Xu, Y. -J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272-297.  doi: 10.1016/j.checat.2021.01.003

    31. [31]

      Wang, S.; Tountas, A. A.; Pan, W.; Zhao, J.; He, L.; Sun, W.; Yang, D.; Ozin, G. A. CO2 footprint of thermal versus photothermal CO2 catalysis. Small 2021, 17, 2007025.  doi: 10.1002/smll.202007025

    32. [32]

      Low, J.; Zhang, L.; Zhu, B.; Liu, Z.; Yu, J. TiO2 photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity. ACS Sustain. Chem. Eng. 2018, 6, 15653-15661.  doi: 10.1021/acssuschemeng.8b04150

    33. [33]

      Li, Y.; Wang, C.; Song, M.; Li, D.; Zhang, X.; Liu, Y. TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Appl. Catal., B 2019, 243, 760-770.  doi: 10.1016/j.apcatb.2018.11.022

    34. [34]

      Yu, F.; Wang, C.; Li, Y.; Ma, H.; Wang, R.; Liu, Y.; Suzuki, N.; Terashima, C.; Ohtani, B.; Ochiai, T.; Fujishima, A.; Zhang, X. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv. Sci. 2020, 7, 2000204.  doi: 10.1002/advs.202000204

    35. [35]

      Yang, X.; Cao, C.; Hohn, K.; Erickson, L.; Maghirang, R.; Hamal, D.; Klabunde, K. Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. J. Catal. 2007, 252, 296-302.  doi: 10.1016/j.jcat.2007.09.014

    36. [36]

      He, J.; Liu, Q.; Sun, Z.; Yan, W.; Zhang, G.; Qi, Z.; Xu, P.; Wu, Z.; Wei, S. High photocatalytic activity of rutile TiO2 induced by iodine doping. J. Phys. Chem. C 2010, 114, 6035-6038.  doi: 10.1021/jp911267m

    37. [37]

      Wang, P.; Jia, C.; Li, J.; Yang, P. Ti3+-doped TiO2(B)/anatase spheres prepared using thioglycolic acid towards super photocatalysis performance. J. Alloys Compd. 2019, 780, 660-670.  doi: 10.1016/j.jallcom.2018.11.398

    38. [38]

      Lin, L.; Feng, X.; Lan, D.; Chen, Y.; Zhong, Q.; Liu, C.; Cheng, Y.; Qi, R.; Ge, J.; Yu, C.; Duan, C. -G.; Huang, R. Coupling effect of Au nanoparticles with the oxygen vacancies of TiO2-x for enhanced charge transfer. J. Phys. Chem. C 2020, 124, 23823-23831.  doi: 10.1021/acs.jpcc.0c09011

    39. [39]

      Huang, Z.; Wu, P.; Gong, B.; Zhang, X.; Liao, Z.; Chiang, P. -C.; Hu, X.; Cui, L. Immobilization of visible light-sensitive (N, Cu) co-doped TiO2 onto rectorite for photocatalytic degradation of p-chlorophenol in aqueous solution. Appl. Clay Sci. 2017, 142, 128-135.  doi: 10.1016/j.clay.2016.10.010

    40. [40]

      Tahir, M.; Tahir, B. Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts. Appl. Surf. Sci. 2016, 377, 244-252.  doi: 10.1016/j.apsusc.2016.03.141

    41. [41]

      Mai, J.; Fang, Y.; Liu, J.; Zhang, J.; Cai, X.; Zheng, Y. Simple synthesis of WO3-Au composite and their improved photothermal synergistic catalytic performance for cyclohexane oxidation. Mol. Catal. 2019, 473, 110389.  doi: 10.1016/j.mcat.2019.04.018

    42. [42]

      Wu, Q.; Li, Z.; Zhang, X.; Huang, W.; Ni, M.; Cen, K.; Zhang, Y. Enhanced defect-water hydrogen evolution method for efficient solar utilization: photo-thermal chemical coupling on oxygen vacancy. Chem. Eng. J. 2021, 408, 127248.  doi: 10.1016/j.cej.2020.127248

    43. [43]

      Li, F.; Yue, X.; Zhang, D.; Fan, J.; Xiang, Q. Targeted regulation of exciton dissociation in graphitic carbon nitride by vacancy modification for efficient photocatalytic CO2 reduction. Appl. Catal., B 2021, 292, 120179.  doi: 10.1016/j.apcatb.2021.120179

    44. [44]

      Han, C.; Zhang, R.; Ye, L.; Wang, L.; Ma, Z.; Su, F.; Xie, H.; Zhou, Y.; Wong, P. K.; Ye, L. Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4. J. Mater. Chem. A 2019, 7, 9726-9735.  doi: 10.1039/C9TA01061K

    45. [45]

      Jiang, Z.; Sun, H.; Wang, T.; Wang, B.; Wei, W.; Li, H.; Yuan, S.; An, T.; Zhao, H.; Yu, J.; Wong, P. K. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energy Environ. Sci. 2018, 11, 2382-2389.  doi: 10.1039/C8EE01781F

    46. [46]

      He, Y.; Li, C.; Chen, X. -B.; Shi, Z.; Feng, S. Visible-light-responsive UiO-66(Zr) with defects efficiently promoting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2022, 14, 28977-28984.  doi: 10.1021/acsami.2c06993

    47. [47]

      Jin, L.; Shaaban, E.; Bamonte, S.; Cintron, D.; Shuster, S.; Zhang, L.; Li, G.; He, J. Surface basicity of metal@TiO2 to enhance photocatalytic efficiency for CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 38595-38603.  doi: 10.1021/acsami.1c09119

    48. [48]

      Yang, P.; Wang, R.; Zhuzhang, H.; Titirici, M. -M.; Wang, X. Photochemical construction of nitrogen-containing nanocarbons for carbon dioxide photoreduction. ACS Catal. 2020, 10, 12706-12715.  doi: 10.1021/acscatal.0c03607

    49. [49]

      Chen, C.; Wang, T.; Yan, K.; Liu, S.; Zhao, Y.; Li, B. Photocatalytic CO2 reduction on Cu single atoms incorporated in ordered macroporous TiO2 toward tunable products. Inorg. Chem. Front. 2022, 9, 4753-4767.  doi: 10.1039/D2QI01155G

    50. [50]

      Li, N.; Wang, B.; Si, Y.; Xue F.; Zhou, J.; Lu, Y.; Liu, M. Toward high-value hydrocarbon generation by photocatalytic reduction of CO2 in water vapor. ACS Catal. 2019, 9, 5590-5602  doi: 10.1021/acscatal.9b00223

    51. [51]

      Wang, Y.; Tang, X.; Huo, P.; Yan, Y.; Zhu, Z.; Dai, J.; Liu, Z.; Li, Z.; Xi, H. Insight into the effect of the Cl 3p orbital on g-C3N4 mimicking photo-synthesis under CO2 reduction. J. Phys. Chem. C 2021, 125, 9646-9656.  doi: 10.1021/acs.jpcc.1c00663

    52. [52]

      Kang, S.; Li, Z.; Xu, Z.; Zhang, Z.; Sun, J.; Bian, J.; Bai, L.; Qu, Y.; Jiang, L. Synthesis of mixed-valence Cu phthalocyanine/graphene/g-C3N4 ultrathin heterojunctions as efficient photocatalysts for CO2 reduction. Catal. Sci. Technol. 2022, 12, 4817-4825.  doi: 10.1039/D2CY00713D

    53. [53]

      Huang, Z.; Wu, J.; Ma, M.; Wang, J.; Wu, S.; Hu, X.; Yuan, C.; Zhou, Y. The selective production of CH4 via photocatalytic CO2 reduction over Pd-modified BiOCl. New J. Chem. 2022, 46, 16889-16898.  doi: 10.1039/D2NJ02725A

    54. [54]

      Su, F.; Chen, Y.; Wang, R.; Zhang, S.; Liu, K.; Zhang, Y.; Zhao, W.; Ding, C.; Xie, H.; Ye, L. Diazanyl and SnO2 bi-activated g-C3N4 for enhanced photocatalytic CO2 reduction. Sustain. Energy Fuels 2021, 5, 1034-1043.  doi: 10.1039/D0SE01561J

  • 加载中
    1. [1]

      Peng JingBoyuan WuZongsu HanWei ShiPeng Cheng . An efficient Ag/MIL-100(Fe) catalyst for photothermal conversion of CO2 at ambient temperature. Chinese Chemical Letters, 2021, 32(11): 3505-3508. doi: 10.1016/j.cclet.2021.04.007

    2. [2]

      Duan ShuhuaWu ShufengWang LeiShe HoudeHuang JingweiWang Qizhao . Rod-Shaped Metal Organic Framework Structured PCN-222(Cu)/TiO2 Composites for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2020, 36(3): 1905086-0. doi: 10.3866/PKU.WHXB201905086

    3. [3]

      HAO Rui-pengYANG Peng-juWANG Zhi-jianZHU Zhen-ping . Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction. Journal of Fuel Chemistry and Technology, 2015, 43(1): 94-99.

    4. [4]

      Min Li Qun Zeng Huang Dong Fang Qiu Zhu Jin Jiao Zhao Hui Meng Heng Zhen Shi . Study on anti-fungal activity of nitrogen-doped TiO2 nanophotocatalyst under visible light irradiation. Chinese Chemical Letters, 2010, 21(1): 117-121. doi: 10.1016/j.cclet.2009.06.038

    5. [5]

      Wei Luo Xiang Kai Fu Li Hua Ma . The research on the high quality TiO2, MoO3-doped WO3 electrochromic film. Chinese Chemical Letters, 2007, 18(7): 883-886. doi: 10.1016/j.cclet.2007.05.003

    6. [6]

      Feng YiqingCheng HanyunHan JinZheng XiuzhenLiu YangyangYang YangZhang Liwu . Chlorophyll sensitized BiVO4 as photoanode for solar water splitting and CO2 conversion. Chinese Chemical Letters, 2017, 28(12): 2254-2258. doi: 10.1016/j.cclet.2017.10.025

    7. [7]

      HAN LuQIN Wei . Preparation and Electrochemical Hydrogen Storage Properties of TiO2 Coated Co9S8. Chinese Journal of Applied Chemistry, 2018, 35(8): 963-968. doi: 10.11944/j.issn.1000-0518.2018.08.180143

    8. [8]

      SHI FengbangCHEN BumingGUO ZhongchengDUAN SiqiHOU Yali . Preparation and Characterization of β-PbO2-TiO2-Co3O4 Composite Coating on Stainless Steel. Chinese Journal of Applied Chemistry, 2012, 29(6): 691-696. doi: 10.3724/SP.J.1095.2012.00317

    9. [9]

      Zhi-Lin ChengShuai Han . Preparation of a novel composite electrode based on N-doped TiO2-coated NaY zeolite membrane and its photoelectrocatalytic performance. Chinese Chemical Letters, 2016, 27(03): 467-470. doi: 10.1016/j.cclet.2015.12.010

    10. [10]

      Yue-Ying YANYue LIJie DENGXi ZHAONa TAYong-Dong CHEN . Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol by Mg-Doped Ceria Monolithic Catalyst. Chinese Journal of Inorganic Chemistry, 2022, 38(7): 1402-1410. doi: 10.11862/CJIC.2022.139

    11. [11]

      Munir Ullah KhanSafir Ullah KhanJiraya KiriratnikomShah ZareenXinghong Zhang . CoCo-PBA/tetrabutylammonium bromide as highly efficient catalyst for CO2 and epoxides coupling reaction under mild conditions. Chinese Chemical Letters, 2022, 33(2): 1081-1086. doi: 10.1016/j.cclet.2021.06.002

    12. [12]

      Zhiling TangChujun WangWenjie HeYuechang WeiZhen ZhaoJian Liu . The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO. Chinese Chemical Letters, 2022, 33(2): 939-942. doi: 10.1016/j.cclet.2021.07.020

    13. [13]

      He WenjieWu XingxingLi YifeiXiong JingTang ZhilingWei YuechangZhao ZhenZhang XiaoLiu Jian . Z-scheme heterojunction of SnS2-decorated 3DOM-SrTiO3 for selectively photocatalytic CO2 reduction into CH4. Chinese Chemical Letters, 2020, 31(10): 2774-2778. doi: 10.1016/j.cclet.2020.07.019

    14. [14]

      Yongan Zhu Zhenyi Zhang Na Lu Ruinian Hua Bin Dong . Prolonging charge-separation states by doping lanthanide-ions into {001}/{101} facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution. Chinese Journal of Catalysis, 2019, 40(3): 413-423. doi: 10.1016/S1872-2067(18)63182-1

    15. [15]

      Shi Xiong Min Fang Wang Lei Feng Yong Chun Tong Zi Rong Yang . Synthesis and photocatalytic activity of TiO2/conjugated polymer complex nanoparticles. Chinese Chemical Letters, 2008, 19(6): 742-746. doi: 10.1016/j.cclet.2008.03.016

    16. [16]

      QIU WeiREN Cheng-JunNG Mao-ChuHOU Yun-ZeCHEN Yao-Qiang . Structure, Surface Properties and Photocatalytic Activity of TiO2 and TiO2/SiO2 Catalysts Prepared at Different pH Values. Acta Physico-Chimica Sinica, 2011, 27(06): 1487-1492. doi: 10.3866/PKU.WHXB20110621

    17. [17]

      CHENG HuiDONG Jiang-ZhouCHAO HuiYAO Jiang-HongCAO Ya-An . Infection of Oxygen Vacancy at the TiO2 Surface for Film Electrode Rup2P/TiO2/ITO Photo-Induced Charge Transfer. Acta Physico-Chimica Sinica, 2012, 28(04): 850-856. doi: 10.3866/PKU.WHXB2012020111

    18. [18]

      LIAO HuiXU Xiang-LanCHEN Wei-QingSHI Qiu-JieLIU Wen-MingWANG Xiang . Ni2P Catalysts Supported on TiO2-Pillared Sepiolite for Thiophene Hydrodesulfurization. Acta Physico-Chimica Sinica, 2012, 28(12): 2924-2930. doi: 10.3866/PKU.WHXB201209281

    19. [19]

      Tong YongchunWang QingyunXu XinjianYang Manyi . Preparation of Multiple Pickering Emulsion Stabilized with NiFe2O4 and TiO2. Chemistry, 2016, 79(7): 676-679.

    20. [20]

      Ping WangHaitao LiYanjie CaoHuogen Yu . Carboxyl-Functionalized Graphene for Highly Efficient H2-Evolution Activity of TiO2 Photocatalyst. Acta Physico-Chimica Sinica, 2021, 37(6): 2008047-0. doi: 10.3866/PKU.WHXB202008047

Metrics
  • PDF Downloads(0)
  • Abstract views(43)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return