Citation: Yue Qiu, Jin-Jin Li, Ling Zhao, Zhenhao Xi, Weikang Yuan. Porous Metal-Organic Framework-Polymer Composites Using High Internal Phase Emulsion Templates: A Review[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 2212060-2212069. doi: 10.14102/j.cnki.0254-5861.2022-0179 shu

Porous Metal-Organic Framework-Polymer Composites Using High Internal Phase Emulsion Templates: A Review

  • Author Bio: Yue Qiu received her bachelor's degree from East China University of Science and Technology (ECUST) in 2021. She is currently studying for her master's degree at school of chemical engineering, ECUST. Her research work focuses on the interface stability mechanism of HIPE and the fabrication of porous polymeric materials
    Jin-Jin Li is an associate professor at School of chemical engineering, East China University of Science and Technology. Her research focuses on the synthesis of functional polymers by controlled radical polymerizations for a wide range of applications, and porous polymers or polymer composites by using HIPE templates
    Ling Zhao is a professor at both of Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and State Key Laboratory of Chemical Engineering, East China University of Science and Technology. Her research focuses on multiphase reaction and transfer: (Ⅰ) industrial reaction process development and (Ⅱ) supercritical fluid assisted polymerization and polymer processing
    Zhenhao Xi is a professor at both of Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and State Key Laboratory of Chemical Engineering, East China University of Science and Technology. He mainly focuses on the researches of polymer reaction engineering and the high-added value polymeric materials
    Weikang Yuan is an academician of the Chinese Academy of Engineering and a distinguished professor at State Key Laboratory of Chemical Engineering, East China University of Science and Technology. He has been engaged in chemical engineering and industrial reactor development, with chemical reaction engineering as the main direction
  • Corresponding author: Jin-Jin Li, Zhenhao Xi,
  • Received Date: 1 August 2022
    Accepted Date: 26 August 2022
    Available Online: 31 August 2022


  • As promising engineering materials for green and sustainable processes, porous metalorganic framework (MOF)-polymer composites show great potential in applications, including adsorption, separation, catalysis, and bioengineering. Owing to the mild and scalable operation, porous polymeric materials derived from high internal phase emulsion templates (polyHIPE) have received great interests in recent decades. In this contribution, research progress of the preparation of porous MOF@polyHIPE composites and their applications are reviewed, highlighting how can MOF particles be shaped by HIPE templates, in particular the polymerizable ones. Four different emulsion templates stabilized by MOFs and the applications of corresponding MOF@polyHIPE are included. Hopefully, both the state-of-art and future directions present herein can give rise to the development of high-performance porous MOF@polyHIPEs.
  • 加载中
    1. [1]

      Lissant, K. J. (ed. ) Emulsions and Emulsion Technology, Part 1 1974, Marcel Dekker, New York, Chap. Ⅰ.

    2. [2]

      Cameron, N. R.; Sherrington, D. C. High internal phase emulsions (HIPEs) - structure, properties and use in polymer preparation. In: biopolymers liquid crystalline polymers phase emulsion. Adv. Polym. Sci. Springer, Berlin, Heidelberg 1996, 126, 163-214.

    3. [3]

      Gao, H.; Ma, L.; Cheng, C.; Liu, J.; Liang, R.; Zou, L.; Liu, W.; McClements, D. J. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends Food Sci. Technol. 2021, 112, 36-49.  doi: 10.1016/j.tifs.2021.03.041

    4. [4]

      Silverstein, M. S. PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 2014, 39, 199-234.  doi: 10.1016/j.progpolymsci.2013.07.003

    5. [5]

      Zhang, T.; Sanguramath, R. A.; Israel, S.; Silverstein, M. S. Emulsion templating: porous polymers and beyond. Macromolecules 2019, 52, 5445-5479.  doi: 10.1021/acs.macromol.8b02576

    6. [6]

      Chevalier, Y.; Bolzinger, M. -A. Emulsions stabilized with solid nano-particles: Pickering emulsions. Colloids Surf. Physicochem. Eng. Asp. 2013, 439, 23-34.  doi: 10.1016/j.colsurfa.2013.02.054

    7. [7]

      Horozov, T. S.; Binks, B. P. Particle‐stabilized emulsions: a bilayer or a bridging monolayer? Angew. Chem. Int. Ed. 2006, 45, 773-776.  doi: 10.1002/anie.200503131

    8. [8]

      Ramsden, W. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). —Preliminary account. Proc. R. Soc. Lond. 1904, 72, 156-164.  doi: 10.1098/rspl.1903.0034

    9. [9]

      Pickering, S. U. Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001-2021.  doi: 10.1039/CT9079102001

    10. [10]

      Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100-102, 503-546.

    11. [11]

      Kralchevsky, P. A.; Ivanov, I. B.; Ananthapadmanabhan, K. P.; Lips, A. On the thermodynamics of particle-stabilized emulsions: curvature effects and catastrophic phase inversion. Langmuir 2005, 21, 50-63.  doi: 10.1021/la047793d

    12. [12]

      Binks, B. P.; Lumsdon, S. O. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 2000, 16, 2539-2547.  doi: 10.1021/la991081j

    13. [13]

      Cai, D.; Thijssen, J. H. T.; Clegg, P. S. Making non-aqueous high internal phase Pickering emulsions: influence of added polymer and selective drying. ACS Appl. Mater. Interfaces 2014, 6, 9214-9219.  doi: 10.1021/am501328r

    14. [14]

      Gurevitch, I.; Silverstein, M. S. Polymerized Pickering HIPEs: effects of synthesis parameters on porous structure. J. Polym. Sci. Part Polym. Chem. 2010, 48, 1516-1525.

    15. [15]

      Zheng, Z.; Zheng, X.; Wang, H.; Du, Q. Macroporous graphene oxide-polymer composite prepared through Pickering high internal phase emulsions. ACS Appl. Mater. Interfaces 2013, 5, 7974-7982.  doi: 10.1021/am4020549

    16. [16]

      Ikem, V. O.; Menner, A.; Bismarck, A. High internal phase emulsions stabilized solely by functionalized silica particles. Angew. Chem. Int. Ed. 2008, 47, 8277-8279.  doi: 10.1002/anie.200802244

    17. [17]

      Menner, A.; Ikem, V.; Salgueiro, M.; Shaffer, M. S. P.; Bismarck, A. High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chem. Commun. 2007, 41, 4274-4276.

    18. [18]

      Colver, P. J.; Bon, S. A. F. Cellular polymer monoliths made via Pickering high internal phase emulsions. Chem. Mater. 2007, 19, 1537-1539.  doi: 10.1021/cm0628810

    19. [19]

      Zhang, S.; Chen, J. PMMA based foams made via surfactant-free high internal phase emulsion templates. Chem. Commun. 2009, 16, 2217-2219.

    20. [20]

      Li, Z.; Ming, T.; Wang, J.; Ngai, T. High internal phase emulsions stabilized solely by microgel particles. Angew. Chem. Int. Ed. 2009, 48, 8490-8493.  doi: 10.1002/anie.200902103

    21. [21]

      Chen, Y.; Ballard, N.; Bon, S. A. F. Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chem. Commun. 2013, 49, 1524-1526.  doi: 10.1039/c2cc38200h

    22. [22]

      Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013, 14, 291-296.  doi: 10.1021/bm301871k

    23. [23]

      Kim, K.; Kim, S.; Ryu, J.; Jeon, J.; Jang, S. G.; Kim, H.; Gweon, D. -G.; Im, W. B.; Han, Y.; Kim, H.; Choi, S. Q. Processable high internal phase Pickering emulsions using depletion attraction. Nat. Commun. 2017, 8, 14305.  doi: 10.1038/ncomms14305

    24. [24]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.  doi: 10.1126/science.1230444

    25. [25]

      Xie, K.; Fu, Q.; Xu, C.; Lu, H.; Zhao, Q.; Curtain, R.; Gu, D.; Webley, P. A.; Qiao, G. G. Continuous assembly of a polymer on a metal-organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy Environ. Sci. 2018, 11, 544-550.  doi: 10.1039/C7EE02820B

    26. [26]

      Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438-1511.  doi: 10.1021/acs.chemrev.9b00223

    27. [27]

      Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710-4728.  doi: 10.1039/C7CS00861A

    28. [28]

      Bai, Y.; Dou, Y.; Xie, L. -H.; Rutledge, W.; Li, J. -R.; Zhou, H. -C. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.  doi: 10.1039/C5CS00837A

    29. [29]

      Lorignon, F.; Gossard, A.; Carboni, M. Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem. Eng. J. 2020, 393, 124765.  doi: 10.1016/j.cej.2020.124765

    30. [30]

      Fonseca, J.; Gong, T. Fabrication of metal-organic framework architectures with macroscopic size: a review. Coord. Chem. Rev. 2022, 462, 214520.  doi: 10.1016/j.ccr.2022.214520

    31. [31]

      Zhang, F.; Sha, Y.; Cheng, X.; Zhang, J. Pickering emulsions stabilized by metal-organic frameworks, graphitic carbon nitride and graphene oxide. Soft Matter. 2022, 18, 10-18.  doi: 10.1039/D1SM01540K

    32. [32]

      Xiao, B.; Yuan, Q. C.; Williams, R. A. Exceptional function of nanoporous metal organic framework particles in emulsion stabilisation. Chem. Commun. 2013, 49, 8208-8210.  doi: 10.1039/c3cc43689f

    33. [33]

      Huo, J.; Marcello, M.; Garai, A.; Bradshaw, D. MOF-polymer composite microcapsules derived from Pickering emulsions. Adv. Mater. 2013, 25, 2717-2722.  doi: 10.1002/adma.201204913

    34. [34]

      Zhang, B.; Zhang, J.; Liu, C.; Peng, L.; Sang, X.; Han, B.; Ma, X.; Luo, T.; Tan, X.; Yang, G. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels. Sci. Rep. 2016, 6, 21401.  doi: 10.1038/srep21401

    35. [35]

      Zhu, H.; Zhang, Q.; Zhu, S. Assembly of a metal-organic framework into 3D hierarchical porous monoliths using a Pickering high internal phase emulsion template. Chem. -Eur. J. 2016, 22, 8751-8755.  doi: 10.1002/chem.201600313

    36. [36]

      Wang, J.; Zhu, H.; Li, B. G.; Zhu, S. Interconnected porous monolith prepared via UiO-66 stabilized Pickering high internal phase emulsion template. Chem. -Eur. J. 2018, 24, 16426-16431.  doi: 10.1002/chem.201803628

    37. [37]

      Lorignon, F.; Gossard, A.; Carboni, M.; Meyer, D. From wastes to interconnected porous monolith: upcycling of Al-based metal organic framework via Pickering emulsion template. Mater. Lett. 2021, 296, 129931.  doi: 10.1016/j.matlet.2021.129931

    38. [38]

      Huang, X. -C.; Lin, Y. -Y.; Zhang, J. -P.; Chen, X. -M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(Ⅱ) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557-1559.  doi: 10.1002/anie.200503778

    39. [39]

      Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186-10191.  doi: 10.1073/pnas.0602439103

    40. [40]

      Sabouni, R.; Gomaa, H. G. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen. Soft Matter 2015, 11, 4507-4516.  doi: 10.1039/C5SM00922G

    41. [41]

      Tan, C.; Lee, M. C.; Arshadi, M.; Azizi, M.; Abbaspourrad, A. A spiderweb-like metal-organic framework multifunctional foam. Angew. Chem. Int. Ed. 2020, 59, 9506-9513.  doi: 10.1002/anie.201916211

    42. [42]

      Jin, P.; Tan, W.; Huo, J.; Liu, T.; Liang, Y.; Wang, S.; Bradshaw, D. Hierarchically porous MOF/polymer composites via interfacial nanoassembly and emulsion polymerization. J. Mater. Chem. A 2018, 6, 20473-20479.  doi: 10.1039/C8TA06766J

    43. [43]

      Wang, J.; Qin, J.; Zhu, H.; Li, B. G.; Zhu, S. Hierarchically porous monolith with high MOF accessibility and strengthened mechanical properties using water-in-oil high internal phase emulsion template. Adv. Mater. Interface 2021, 8, 2100620.  doi: 10.1002/admi.202100620

    44. [44]

      Kovacic, S.; Mazaj, M.; Jeselnik, M.; Pahovnik, D.; Zagar, E.; Slugovc, C.; Logar, N. Z. Synthesis and catalytic performance of hierarchically porous MIL-100(Fe)@polyHIPE hybrid membranes. Macromol. Rapid Commun. 2015, 36, 1605-1611.  doi: 10.1002/marc.201500241

    45. [45]

      Jiang, X.; Pan, H.; Ruan, G.; Hu, H.; Huang, Y.; Chen, Z. Wettability tunable metal organic framework functionalized high internal phase emulsion porous monoliths for fast solid-phase extraction and sensitive analysis of hydrophilic heterocyclic amines. J. Hazard. Mater. 2022, 431, 128565.  doi: 10.1016/j.jhazmat.2022.128565

    46. [46]

      Zhang, J.; Han, B. Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Acc. Chem. Res. 2013, 46, 425-433.  doi: 10.1021/ar300194j

    47. [47]

      Butler, R.; Davies, C. M.; Cooper, A. I. Emulsion templating using high internal phase supercritical fluid emulsions. Adv. Mater. 2001, 13, 1459-1463.  doi: 10.1002/1521-4095(200110)13:19<1459::AID-ADMA1459>3.0.CO;2-K

    48. [48]

      Yang, Z.; Cao, L.; Li, J.; Lin, J.; Wang, J. Facile synthesis of Cu-BDC/poly(N-methylol acrylamide) HIPE monoliths via CO2-in-water emulsion stabilized by metal-organic framework. Polymer 2018, 153, 17-23.  doi: 10.1016/j.polymer.2018.07.085

    49. [49]

      Yang, Z.; Cao, L.; Qian, Y. Effect of comonomer on the Cu-BDC/poly(NMA-co-SAS) foams templating from CO2-in-water emulsion: adsorptive and bacteriostatic applications. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 124959.  doi: 10.1016/j.colsurfa.2020.124959

    50. [50]

      Dong, Y.; Cao, L.; Li, J.; Yang, Y.; Wang, J. Facile preparation of UiO-66/PAM monoliths via CO2-in-water HIPEs and their applications. RSC. Adv. 2018, 8, 32358-32367.  doi: 10.1039/C8RA05809A

    51. [51]

      Yang, Y.; Cao, L.; Li, J.; Dong, Y.; Wang, J. High‐performance composite monolith synthesized via HKUST-1 stabilized HIPEs and its adsorptive properties. Macromol. Mater. Eng. 2018, 303, 1800426.  doi: 10.1002/mame.201800426

    52. [52]

      Yang, X.; Hao, Y.; Cao, L. Bio-compatible Ca-BDC/polymer monolithic composites templated from bio-active Ca-BDC co-stabilized CO2-in-water high internal phase emulsions. Polymers 2020, 12, 931.  doi: 10.3390/polym12040931

    53. [53]

      Dong, K.; Liu, X.; Dong, H.; Zhang, X.; Zhang, S. Multiscale studies on ionic liquids. Chem. Rev. 2017, 117, 6636-6695.  doi: 10.1021/acs.chemrev.6b00776

    54. [54]

      Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881-6928.  doi: 10.1021/acs.chemrev.6b00652

    55. [55]

      Li, Z.; Zhang, J.; Luo, T.; Tan, X.; Liu, C.; Sang, X.; Ma, X.; Han, B.; Yang, G. High internal ionic liquid phase emulsion stabilized by metal-organic frameworks. Soft Matter 2016, 12, 8841-8846.  doi: 10.1039/C6SM01610C

    56. [56]

      Zhan, G.; Zeng, H. C. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters. Chem. Commun. 2017, 53, 72-81.  doi: 10.1039/C6CC07094A

    57. [57]

      Mazaj, M.; Logar, N. Z.; Žagar, E.; Kovačič, S. A facile strategy towards a highly accessible and hydrostable MOF-phase within hybrid polyHIPEs through in situ metal-oxide recrystallization. J. Mater. Chem. A 2017, 5, 1967-1971.  doi: 10.1039/C6TA10886E

    58. [58]

      Zhu, J.; Wu, L.; Bu, Z.; Jie, S.; Li, B. -G. Polyethylenimine-grafted HKUST-type MOF/polyHIPE porous composites (PEI@PGD-H) as highly efficient CO2 adsorbents. Ind. Eng. Chem. Res. 2019, 58, 4257-4266.  doi: 10.1021/acs.iecr.9b00213

    59. [59]

      Yang, Y.; Li, J.; Dong, Y.; Wang, J.; Cao, L. Preparation of porous monoliths via CO2-in-water HIPEs template and the in situ growth of metal organic frameworks on it for multiple applications. Polym. Adv. Technol. 2020, 31, 1591-1601.  doi: 10.1002/pat.4888

    60. [60]

      Liu, S.; Lu, G.; Ou, H.; Shi, R.; Pan, J. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of luteolin. J. Colloid Interface Sci. 2021, 601, 782-792.  doi: 10.1016/j.jcis.2021.05.165

    61. [61]

      Wickenheisser, M.; Janiak, C. Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2-hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications. Microporous Mesoporous Mater. 2015, 204, 242-250.  doi: 10.1016/j.micromeso.2014.11.025

    62. [62]

      Wickenheisser, M.; Paul, T.; Janiak, C. Prospects of monolithic MIL-MOF@poly(NIPAM)HIPE composites as water sorption materials. Microporous Mesoporous Mater. 2016, 220, 258-269.  doi: 10.1016/j.micromeso.2015.09.008

    63. [63]

      Niu, H. Y.; Cao, L. Q.; Yang, X. L.; Liu, K. N.; Liu, L.; Wang, J. D. In situ growth of the ZIF-8 on the polymer monolith via CO2-in-water HIPEs stabilized using metal oxide nanoparticles and its photocatalytic activity. Polym. Adv. Technol. 2021, 32, 3194-3204.  doi: 10.1002/pat.5331

    64. [64]

      Kalinovskyy, Y.; Wright, A. J.; Hiscock, J. R.; Watts, T. D.; Williams, R. L.; Cooper, N. J.; Main, M. J.; Holder, S. J.; Blight, B. A. Swell and destroy: a metal-organic framework-containing polymer sponge that immobilizes and catalytically degrades nerve agents. ACS Appl. Mater. Interfaces 2020, 12, 8634-8641.  doi: 10.1021/acsami.9b18478

    65. [65]

      Wei, Y.; Zhang, Y.; Li, B.; Guan, W.; Yan, C.; Li, X.; Yan, Y. Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural. Chin. J. Chem. Eng. 2022, 44, 169-181.  doi: 10.1016/j.cjche.2021.06.019

    66. [66]

      Zhao, J.; Zhang, Y.; Wang, K.; Yan, C.; Da, Z.; Li, C.; Yan, Y. Development of hierarchical porous MOF-based catalyst of UiO-66(Hf) and its application for 5-hydroxymethylfurfural production from cellulose. ChemistrySelect 2018, 3, 11476-11485.  doi: 10.1002/slct.201802423

    67. [67]

      Ma, C.; Wang, J.; Cao, L. Preparation of macroporous hybrid monoliths via iron-based MOFs-stabilized CO2-in-water HIPEs and use for β-amylase immobilization. Polym. Adv. Technol. 2020, 31, 2967-2979.  doi: 10.1002/pat.5019

  • 加载中
    1. [1]

      Zhengyi DiXinjing ZhengYu QiHeng YuanCheng-Peng Li . Recent Advances in C2 Gases Separation and Purification by Metal-Organic Frameworks. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211031-2211044. doi: 10.14102/j.cnki.0254-5861.2022-0132

    2. [2]

      Xu Zi-YueLuo YiWang HuiZhang Dan-WeiLi Zhan-Ting . Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations. Chinese Journal of Organic Chemistry, 2020, 40(11): 3777-3793. doi: 10.6023/cjoc202003070

    3. [3]

      Xinlong YaoZhenchao ZhaoGuangjin Hou . Development of In Situ MAS NMR and Its Applications in Material Synthesis and Heterogeneous Catalysis. Chinese Journal of Structural Chemistry, 2022, 41(10): 2210045-2210055. doi: 10.14102/j.cnki.0254-5861.2022-0166

    4. [4]

      YANG LongWANG QinDENG Yong-JunWANG Xiao-YuanHE RenYI Zhi-YongJIANG LongQIU Yong . Effect of Metal Exchange on the Light-Absorbing and Band-Gap Properties of Nanoporous Zn-Cu based MOFs. Chinese Journal of Inorganic Chemistry, 2018, 34(7): 1199-1208. doi: 10.11862/CJIC.2018.117

    5. [5]

      Lei XieChaoqin HuangZhaofeng LiangHongbing WangZheng JiangFei Song . In-Situ HP-STM and Operando EC-STM Studies of Heterogeneous Catalysis at Interfaces. Chinese Journal of Structural Chemistry, 2022, 41(10): 2210029-2210044. doi: 10.14102/j.cnki.0254-5861.2022-0136

    6. [6]

      Kong ShengnanMalik Abaid UllahQian XuefengShu MouhaiXiao Wende . Asymmetric Hydrogenation of β-Keto Esters Catalyzed by Ruthenium Species Supported on Porous Organic Polymer. Chinese Journal of Organic Chemistry, 2018, 38(3): 656-664. doi: 10.6023/cjoc201709018

    7. [7]

      Rui-Xue ZHUGEPeng-Chao SHITeng ZHANG . MOF-Conductive Polymer Composite Film as Electrocatalyst for Oxygen Reduction in Acidic Media. Chinese Journal of Structural Chemistry, 2022, 41(3): 2203062-2203069. doi: 10.14102/j.cnki.0254-5861.2011-3350

    8. [8]

      Xu HuanZhang MaoyuanHuang XiangShi Dabin . Palladium Nanoparticles Supported on MIL-101 as an Efficient Heterogeneous Catalyst for Selective C2 Arylation of Benzofuran. Chinese Journal of Organic Chemistry, 2018, 38(4): 832-839. doi: 10.6023/cjoc201710012

    9. [9]

      Kong ShengnanAbaid Ullah MalikQian XuefengShu MouhaiXiao Wende . C-C Coupling Reactions in Water Catalyzed by Palladium. Chinese Journal of Organic Chemistry, 2018, 38(2): 432-442. doi: 10.6023/cjoc201709016

    10. [10]

      YE Yong-ZhouSHEN FeiWANG Hong-NingCHEN Ruo-YuSUN Lin . Preparation of Titania Doped SiO2 Nanotube Composites with Manganese Loadings for NH3-SCR Applications. Chinese Journal of Inorganic Chemistry, 2018, 34(11): 2088-2096. doi: 10.11862/CJIC.2018.260

    11. [11]

      ZHU JieGE Feng-JuanCHEN YanXU YanZHANG Xue-YangZOU Wei-XinDONG Lin . Preparation of Coral-like Rutile Titania with Enhanced Photocatalytic Activity under UV and Visible Light. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1470-1476. doi: 10.11862/CJIC.2019.162

    12. [12]

      Zhong WenwuTang QianYang ZongfaZeng XueGan LinlingLan ZuopingYang Yuanjuan . Decarboxylative Oxyphosphorylation of Alkynyl Carboxylic Acids with H-Phosphonates Catalyzed by Cu-Cu2O/GO-NH2. Chinese Journal of Organic Chemistry, 2019, 39(12): 3467-3474. doi: 10.6023/cjoc201907010

    13. [13]

      WANG Peng-ChengWU Shu-JieSHAN LiangJIANG Yan-SongFAN YongWANG LiCHEN Xiao-DongXU Jia-Ning . Substrate-Selectivity of Strecker Reaction Based on Amino-Functionalized Ga-MIL-53 Catalyst. Chinese Journal of Inorganic Chemistry, 2020, 36(3): 547-554. doi: 10.11862/CJIC.2020.036

    14. [14]

      XU Shu-HaoLIN Qing-JingLIU ShuangLIU Jing-YingXU Hai-DiWANG Jian-LiCHEN Yao-Qiang . Promotional Effects of Silanization on the Hydrothermal Stability of CuCe/BEA Catalyst for Selective Catalytic Reduction of NOx with NH3. Chinese Journal of Inorganic Chemistry, 2020, 36(12): 2385-2394. doi: 10.11862/CJIC.2020.256

    15. [15]

      ZHANG Dian-YuLIU FangDU Peng-FeiLI Meng-WeiWU Zhao-XuanFENG Yi-BingZHAO YangXU Xiao-YanZHANG Xin-XingLU Jun-LingYANG Bing . Dynamic Formation of Pdδ+-Fe2+ Interface Promoting Reverse Water Gas Shift Reaction over Pd/FeOx Catalyst. Chinese Journal of Inorganic Chemistry, 2021, 37(1): 140-150. doi: 10.11862/CJIC.2021.002

    16. [16]

      Xiao-Min HUHui CHENXuan-Yi JIAQiao WANGLi-Hong HUANG . Y-Mn-O Supported Ni-Based Catalyst for Hydrogen Production via Auto-thermal Reforming of Acetic Acid. Chinese Journal of Inorganic Chemistry, 2021, 37(3): 555-560. doi: 10.11862/CJIC.2021.032

    17. [17]

      Binran ZhaoYiyi ZhaoPeng LiuYulong MenXinyu MengYunxiang Pan . Progress and Understanding on Catalysts with Well-defined Interface for Boosting CO2 Conversion. Chinese Journal of Structural Chemistry, 2022, 41(4): 2204012-2204021. doi: 10.14102/j.cnki.0254-5861.2022-0024

    18. [18]

      Guan XuWang YanCai Wangfeng . A composite metal-organic framework material with high selective adsorption for dibenzothiophene. Chinese Chemical Letters, 2019, 30(6): 1310-1314. doi: 10.1016/j.cclet.2019.02.029

    19. [19]

      Chengqian CuiGuodong LiZhiyong Tang . Metal-organic framework nanosheets and their composites for heterogeneous thermal catalysis: Recent progresses and challenges. Chinese Chemical Letters, 2021, 32(11): 3307-3321. doi: 10.1016/j.cclet.2021.04.001

    20. [20]

      Yang QiWang BinChen YaXie YaboLi Jianrong . An anionic In(III)-based metal-organic framework with Lewis basic sites for the selective adsorption and separation of organic cationic dyes. Chinese Chemical Letters, 2019, 30(1): 234-238. doi: 10.1016/j.cclet.2018.03.023

  • PDF Downloads(0)
  • Abstract views(26)
  • HTML views(2)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint