Citation: Guoliang Liu, Xiao-Qin Liu, Lin-Bing Sun. Recent Advances in Metal-Organic Cages-Based Composite Membranes[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221110. doi: 10.14102/j.cnki.0254-5861.2022-0178 shu

Recent Advances in Metal-Organic Cages-Based Composite Membranes




  • Author Bio: Guoliang Liu received his PhD in physical chemistry from Fujian Institute of Research on the Structure of Matter, CAS, where he worked on application-oriented design and synthesis of zirconium metal-organic cages (Zr-MOCs) under the guidance of Prof. Daqiang Yuan. After a postdoctoral stint at National University of Singapore with Prof. Dan Zhao, he joined the faculty of Nanjing Tech University at 2020. His research interests focus on the construction of Zr-MOCs based crystalline porous supramolecular frameworks for sophisticated applications
    Xiao-Qin Liu obtained her PhD in 1999 from Nanjing Tech University under the supervision of Professor Jun Shi and Professor Hu-Qing Yao. She joined the faculty of Nanjing Tech University in 1982, and became a professor in 1999. Her current research interests focus on the design, synthesis, and applications of porous functional materials, with emphasis on adsorbents and catalysts
    Lin-Bing Sun obtained his PhD in 2008 from Nanjing University under the supervision of Professor Jian-Hua Zhu and Professor Yuan Chun. He joined the faculty of Nanjing Tech University in 2008, and became an associate professor in 2011. He was a postdoctoral research associate at Texas A & M University with Professor Hong-Cai Zhou in 2011-2012. His current research interests focus on the fabrication of porous materials and their applications in adsorption and heterogeneous catalysis
  • Corresponding author: Lin-Bing Sun, lbsun@njtech.edu.cn
  • Received Date: 1 August 2022
    Accepted Date: 18 August 2022
    Available Online: 23 August 2022

Figures(8)

  • Conventional polymeric membranes face several limitations, such as the trade-off between permeability and selectivity, and physical aging or membrane fouling. In this case, fabrication of composite membranes, usually including mixed matrix membranes (MMMs) or thin film nanocomposite (TFN) membranes by introduction of porous materials as fillers has gained much attention. To achieve excellent membrane performance, it is of great importance to select proper porous materials to avoid agglomeration or precipitation during the composite membrane fabrication processes. Metal-organic cages (MOCs) have been explored as additives for the fabrication of defectfree composite membranes owing to their diversified topologies, well-defined pore structures, nanoscale size, and excellent solubility. This review mainly focuses on the recent advances in applications of MOCs for membrane separation, including synthetic artificial channels, reverse osmosis, nanofiltration, pervaporation and gas separation. Besides, two types of MOCs that have been extensively investigated for composite membrane fabrication are also highlighted. Furthermore, challenges and possible directions are also discussed in details, hoping to provide insightful guidance on the development of more MOC-based membranes with impressive separation performance.
  • 加载中
    1. [1]

      Lee, W. H.; Seong, J. G.; Hu, X.; Lee, Y. M. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: pushing performance limits and revisiting trade-off lines. J. Polym. Sci. 2020, 58, 2450-2466.  doi: 10.1002/pol.20200110

    2. [2]

      Hayek, A.; Shalabi, Y. A.; Alsamah, A. Sour mixed-gas upper bounds of glassy polymeric membranes. Sep. Purif. Technol. 2021, 277, 119535.  doi: 10.1016/j.seppur.2021.119535

    3. [3]

      Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite membranes-a review and comparison with MOFs. Chem. Soc. Rev. 2015, 44, 7128-7154.  doi: 10.1039/C5CS00292C

    4. [4]

      Guo, J.; Zhang, Y.; Zhu, Y.; Long, C.; Zhao, M.; He, M.; Zhang, X.; Lv, J.; Han, B.; Tang, Z. Ultrathin chiral metal-organic-framework nanosheets for efficient enantioselective separation. Angew. Chem. Int. Ed. 2018, 57, 6873-6877.  doi: 10.1002/anie.201803125

    5. [5]

      Fan, H.; Gu, J.; Meng, H.; Knebel, A.; Caro, J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 2018, 57, 4083-4087.  doi: 10.1002/anie.201712816

    6. [6]

      Fan, W.; Ying, Y.; Peh, S. B.; Yuan, H.; Yang, Z.; Yuan, Y. D.; Shi, D.; Yu, X.; Kang, C.; Zhao, D. Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2021, 143, 17716-17723.  doi: 10.1021/jacs.1c08404

    7. [7]

      Ji, T.; Liu, L.; Sun, Y.; Liu, Y.; Xu, G.; Yan, J.; He, G.; Liu, Y. Sub-zero temperature synthesis of pressure-resistant ZIF-8 membrane with superior C3H6/C3H8 separation performance. ACS Mater. Lett. 2022, 4, 1094-1100.  doi: 10.1021/acsmaterialslett.2c00119

    8. [8]

      Gascon, J.; Kapteijn, F. Metal-organic framework membranes-high potential, bright future? Angew. Chem. Int. Ed. 2010, 49, 1530-1532.  doi: 10.1002/anie.200906491

    9. [9]

      Qiu, S.; Xue, M.; Zhu, G. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116-6140.  doi: 10.1039/C4CS00159A

    10. [10]

      Ying, Y.; Tong, M.; Ning, S.; Ravi, S. K.; Peh, S. B.; Tan, S. C.; Pennycook, S. J.; Zhao, D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 2020, 142, 4472-4480.  doi: 10.1021/jacs.9b13825

    11. [11]

      Fan, W.; Yuan, S.; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; Sun, D.; Zhou, H. C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728-8737.  doi: 10.1021/jacs.0c00805

    12. [12]

      Fan, W.; Zhang, X.; Kang, Z.; Liu, X.; Sun, D. Isoreticular chemistry within metal-organic frameworks for gas storage and separation. Coord. Chem. Rev. 2021, 443, 213968.  doi: 10.1016/j.ccr.2021.213968

    13. [13]

      Ji, C.; Su, K.; Wang, W.; Chang, J.; El-Sayed, E. -S. M.; Zhang, L.; Yuan, D. Tunable cage-based three-dimensional covalent organic frameworks. CCS Chem. 2021, 3, 3094-3104.

    14. [14]

      Chen, C.; Di, Z.; Li, H.; Liu, J.; Wu, M.; Hong, M. An ultrastable π-π stacked porous organic molecular framework as a crystalline sponge for rapid molecular structure determination. CCS Chem. 2022, 4, 1315-1325.  doi: 10.31635/ccschem.021.202100910

    15. [15]

      Carreon, M. A. Microporous crystalline molecular sieve membranes for molecular gas separations: what is next? ACS Mater. Lett. 2022, 4, 868-873.  doi: 10.1021/acsmaterialslett.2c00102

    16. [16]

      Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 2016, 28, 1277-1285.  doi: 10.1021/acs.chemmater.5b02902

    17. [17]

      Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed-matrix membranes. Angew. Chem. Int. Ed. 2017, 56, 9292-9310.  doi: 10.1002/anie.201701109

    18. [18]

      He, S.; Zhu, B.; Jiang, X.; Han, G.; Li, S.; Lau, C. H.; Wu, Y.; Zhang, Y.; Shao, L. Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2114964119.  doi: 10.1073/pnas.2114964119

    19. [19]

      Zeng, H.; He, S.; Hosseini, S. S.; Zhu, B.; Shao, L. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Adv. Membr. 2022, 2, 100015.  doi: 10.1016/j.advmem.2021.100015

    20. [20]

      Zhang, Y.; Guo, J.; Han, G.; Bai, Y.; Ge, Q.; Ma, J.; Lau, C. H.; Shao, L. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci. Adv. 2021, 7, eabe8706.  doi: 10.1126/sciadv.abe8706

    21. [21]

      Corcos, A. R.; Levato, G. A.; Jiang, Z.; Evans, A. M.; Livingston, A. G.; Mariñas, B. J.; Dichtel, W. R. Reducing the pore size of covalent organic frameworks in thin-film composite membranes enhances solute rejection. ACS Mater. Lett. 2019, 1, 440-446.  doi: 10.1021/acsmaterialslett.9b00272

    22. [22]

      Cheng, Y.; Ying, Y.; Zhai, L.; Liu, G.; Dong, J.; Wang, Y.; Christopher, M. P.; Long, S.; Wang, Y.; Zhao, D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 2019, 573, 97-106.  doi: 10.1016/j.memsci.2018.11.060

    23. [23]

      Zhu, G.; Zhang, F.; Rivera, M. P.; Hu, X.; Zhang, G.; Jones, C. W.; Lively, R. P. Molecularly mixed composite membranes for advanced separation processes. Angew. Chem. Int. Ed. 2019, 58, 2638-2643.  doi: 10.1002/anie.201811341

    24. [24]

      Percastegui, E. G.; Ronson, T. K.; Nitschke, J. R. Design and applications of water-soluble coordination cages. Chem. Rev. 2020, 120, 13480-13544.  doi: 10.1021/acs.chemrev.0c00672

    25. [25]

      Gosselin, A. J.; Rowland, C. A.; Bloch, E. D. Permanently microporous metal-organic polyhedra. Chem. Rev. 2020, 120, 8987-9014.  doi: 10.1021/acs.chemrev.9b00803

    26. [26]

      Fang, Y.; Powell, J. A.; Li, E.; Wang, Q.; Perry, Z.; Kirchon, A.; Yang, X.; Xiao, Z.; Zhu, C.; Zhang, L.; Huang, F.; Zhou, H. C. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 2019, 48, 4707-4730.  doi: 10.1039/C9CS00091G

    27. [27]

      Lee, S.; Jeong, H.; Nam, D.; Lah, M. S.; Choe, W. The rise of metalorganic polyhedra. Chem. Soc. Rev. 2021, 50, 528-555.  doi: 10.1039/D0CS00443J

    28. [28]

      Sanchez-Gonzalez, E.; Tsang, M. Y.; Troyano, J.; Craig, G. A.; Furukawa, S. Assembling metal-organic cages as porous materials. Chem. Soc. Rev. 2022, 51, 4876-4889.  doi: 10.1039/D1CS00759A

    29. [29]

      Dong, J.; Liu, Y.; Cui, Y. Supramolecular chirality in metal-organic complexes. Acc. Chem. Res. 2021, 54, 194-206.  doi: 10.1021/acs.accounts.0c00604

    30. [30]

      Zhu, Z. Z.; Tian, C. B.; Sun, Q. F. Coordination-assembled molecular cages with metal cluster nodes. Chem. Rec. 2021, 21, 498-522.  doi: 10.1002/tcr.202000130

    31. [31]

      Decker, G. E.; Lorzing, G. R.; Deegan, M. M.; Bloch, E. D. MOF-mimetic molecules: carboxylate-based supramolecular complexes as molecular metal-organic framework analogues. J. Mater. Chem. A 2020, 8, 4217-4229.  doi: 10.1039/C9TA12497G

    32. [32]

      Zhang, D.; Ronson, T. K.; Zou, Y. -Q.; Nitschke, J. R. Metal-organic cages for molecular separations. Nat. Rev. Chem. 2021, 5, 168-182.  doi: 10.1038/s41570-020-00246-1

    33. [33]

      Zhang, J. H.; Xie, S. M.; Zi, M.; Yuan, L. M. Recent advances of application of porous molecular cages for enantioselective recognition and separation. J. Sep. Sci. 2020, 43, 134-149.  doi: 10.1002/jssc.201900762

    34. [34]

      Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Porous metal-organic polyhedra: 25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 2001, 123, 4368-4369.  doi: 10.1021/ja0104352

    35. [35]

      Moulton, B.; Lu, J.; Mondal, A.; Zaworotko, M. J. Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem. Commun. 2001, 37, 863-864.

    36. [36]

      Furukawa, H.; Kim, J.; Ockwig, N. W.; O'Keeffe, M.; Yaghi, O. M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. J. Am. Chem. Soc. 2008, 130, 11650-11661.  doi: 10.1021/ja803783c

    37. [37]

      Li, J. R.; Zhou, H. C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat. Chem. 2010, 2, 893-898.  doi: 10.1038/nchem.803

    38. [38]

      Liu, G.; Ju, Z.; Yuan, D.; Hong, M. In situ construction of a coordination zirconocene tetrahedron. Inorg. Chem. 2013, 52, 13815-13817.  doi: 10.1021/ic402428m

    39. [39]

      El-Sayed, E. M.; Yuan, Y. D.; Zhao, D.; Yuan, D. Zirconium metalorganic cages: synthesis and applications. Acc. Chem. Res. 2022, 55, 1546-1560.  doi: 10.1021/acs.accounts.1c00654

    40. [40]

      Liu, G.; Zhou, M.; Su, K.; Babarao, R.; Yuan, D.; Hong, M. Stabilizing the extrinsic porosity in metal-organic cages-based supramolecular framework by in situ catalytic polymerization. CCS Chem. 2021, 3, 1382-1390.  doi: 10.31635/ccschem.020.202000263

    41. [41]

      Nam, D.; Huh, J.; Lee, J.; Kwak, J. H.; Jeong, H. Y.; Choi, K.; Choe, W. Cross-linking Zr-based metal-organic polyhedra via postsynthetic polymerization. Chem. Sci. 2017, 8, 7765-7771.  doi: 10.1039/C7SC03847J

    42. [42]

      Liu, G.; Zeller, M.; Su, K.; Pang, J.; Ju, Z.; Yuan, D.; Hong, M. Controlled orthogonal self-assembly of heterometal-decorated coordination cages. Chem. Eur. J. 2016, 22, 17345-17350.  doi: 10.1002/chem.201604264

    43. [43]

      Yuan, H.; Liu, G.; Qiao, Z.; Li, N.; Buenconsejo, P. J. S.; Xi, S.; Karmakar, A.; Li, M.; Cai, H.; Pennycook, S. J.; Zhao, D. Solutionprocessable metal-organic framework nanosheets with variable functionalities. Adv. Mater. 2021, 33, e2101257.  doi: 10.1002/adma.202101257

    44. [44]

      Liu, G.; Yuan, Y. D.; Wang, J.; Cheng, Y.; Peh, S. B.; Wang, Y.; Qian, Y.; Dong, J.; Yuan, D.; Zhao, D. Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages. J. Am. Chem. Soc. 2018, 140, 6231-6234.  doi: 10.1021/jacs.8b03517

    45. [45]

      Jiang, Y.; Tan, P.; Qi, S. -C.; Gu, C.; Peng, S. -S.; Wu, F.; Liu, X. -Q.; Sun, L. -B. Breathing metal-organic polyhedra controlled by light for carbon dioxide capture and liberation. CCS Chem. 2021, 3, 1659-1668.  doi: 10.31635/ccschem.020.202000314

    46. [46]

      Gosselin, E. J.; Decker, G. E.; Antonio, A. M.; Lorzing, G. R.; Yap, G. P. A.; Bloch, E. D. A Charged coordination cage-based porous salt. J. Am. Chem. Soc. 2020, 142, 9594-9598.  doi: 10.1021/jacs.0c02806

    47. [47]

      Xing, W. -H.; Li, H. -Y.; Dong, X. -Y.; Zang, S. -Q. Robust multifunctional Zr-based metal-organic polyhedra for high proton conductivity and selective CO2 capture. J. Mater. Chem. A 2018, 6, 7724-7730.  doi: 10.1039/C8TA00858B

    48. [48]

      Jung, M.; Kim, H.; Baek, K.; Kim, K. Synthetic ion channel based on metal-organic polyhedra. Angew. Chem. Int. Ed. 2008, 47, 5755-5757.  doi: 10.1002/anie.200802240

    49. [49]

      Kawano, R.; Horike, N.; Hijikata, Y.; Kondo, M.; Carné-Sánchez, A.; Larpent, P.; Ikemura, S.; Osaki, T.; Kamiya, K.; Kitagawa, S.; Takeuchi, S.; Furukawa, S. Metal-organic cuboctahedra for synthetic ion channels with multiple conductance states. Chem 2017, 2, 393-403.  doi: 10.1016/j.chempr.2017.02.002

    50. [50]

      Li, Y.; Dong, J.; Gong, W.; Tang, X.; Liu, Y.; Cui, Y.; Liu, Y. Artificial biomolecular channels: enantioselective transmembrane transport of amino acids mediated by homochiral zirconium metal-organic cages. J. Am. Chem. Soc. 2021, 143, 20939-20951.  doi: 10.1021/jacs.1c09992

    51. [51]

      Liu, G.; Zhang, X.; Yuan, Y. D.; Yuan, H.; Li, N.; Ying, Y.; Peh, S. B.; Wang, Y.; Cheng, Y.; Cai, Y.; Gu, Z.; Cai, H.; Zhao, D. Thin-film nanocomposite membranes containing water-stable zirconium metal-organic cages for desalination. ACS Mater. Lett. 2021, 3, 268-274.  doi: 10.1021/acsmaterialslett.0c00511

    52. [52]

      Yuan, Y. D.; Zhang, X.; Yang, Z.; Zhao, D. Metal-organic cage incorporating thin-film nanocomposite membranes with antifouling properties. Chem. Commun. 2022, 58, 6865-6868.  doi: 10.1039/D2CC01032A

    53. [53]

      Zhang, C.; Si, X.; Zhang, S.; Pei, B.; Gu, J.; Bai, Y. Porous metalorganic molecular cage: a promising candidate to highly improve the nanofiltration performance of thin film nanocomposite membranes. New J. Chem. 2019, 43, 1699-1709.  doi: 10.1039/C8NJ04603D

    54. [54]

      Guo, X.; Xu, S.; Sun, Y.; Qiao, Z.; Huang, H.; Zhong, C. Metal-organic polyhedron membranes for molecular separation. J. Membr. Sci. 2021, 632, 119354.  doi: 10.1016/j.memsci.2021.119354sue=11

    55. [55]

      Xu, S.; Li, S.; Guo, X.; Huang, H.; Qiao, Z.; Zhong, C. Co-assembly of soluble metal-organic polyhedrons for high-flux thin-film nanocomposite membranes. J. Colloid Inter. Sci. 2022, 615, 10-18.  doi: 10.1016/j.jcis.2022.01.173

    56. [56]

      Liu, J.; Duan, W.; Song, J.; Guo, X.; Wang, Z.; Shi, X.; Liang, J.; Wang, J.; Cheng, P.; Chen, Y.; Zaworotko, M. J.; Zhang, Z. Self-healing hyper-cross-linked metal-organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J. Am. Chem. Soc. 2019, 141, 12064-12070.  doi: 10.1021/jacs.9b05155

    57. [57]

      Zhao, C.; Wang, N.; Wang, L.; Huang, H.; Zhang, R.; Yang, F.; Xie, Y.; Ji, S.; Li, J. R. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation. Chem. Commun. 2014, 50, 13921-13923.  doi: 10.1039/C4CC05279J

    58. [58]

      Zhao, C.; Wang, N.; Wang, L.; Sheng, S.; Fan, H.; Yang, F.; Ji, S.; Li, J. -R.; Yu, J. Functionalized metal-organic polyhedra hybrid membranes for aromatic hydrocarbons recovery. ALChE J. 2016, 62, 3706-3716.  doi: 10.1002/aic.15263

    59. [59]

      Perez, E. V.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. Metalorganic polyhedra 18 mixed-matrix membranes for gas separation. J. Membr. Sci. 2014, 463, 82-93.  doi: 10.1016/j.memsci.2014.03.045

    60. [60]

      Kitchin, M.; Teo, J.; Konstas, K.; Lau, C. H.; Sumby, C. J.; Thornton, A. W.; Doonan, C. J.; Hill, M. R. AIMs: a new strategy to control physical aging and gas transport in mixed-matrix membranes. J. Mater. Chem. A 2015, 3, 15241-15247.  doi: 10.1039/C5TA02286J

    61. [61]

      Liu, X.; Wang, X.; Bavykina, A. V.; Chu, L.; Shan, M.; Sabetghadam, A.; Miro, H.; Kapteijn, F.; Gascon, J. Molecular-scale hybrid membranes derived from metal-organic polyhedra for gas separation. ACS Appl. Mater. Interfaces 2018, 10, 21381-21389.  doi: 10.1021/acsami.8b07045

    62. [62]

      Ma, J.; Ying, Y.; Yang, Q.; Ban, Y.; Huang, H.; Guo, X.; Xiao, Y.; Liu, D.; Li, Y.; Yang, W.; Zhong, C. Mixed-matrix membranes containing functionalized porous metal-organic polyhedrons for the effective separation of CO2-CH4 mixture. Chem. Commun. 2015, 51, 4249-4251.  doi: 10.1039/C5CC00384A

    63. [63]

      Deng, Z.; Ying, W.; Gong, K.; Zeng, Y. J.; Yan, Y.; Peng, X. Facilitate gas transport through metal-organic polyhedra constructed porous liquid membrane. Small 2020, 16, e1907016.  doi: 10.1002/smll.201907016

    64. [64]

      Hosono, N.; Guo, W.; Omoto, K.; Yamada, H.; Kitagawa, S. Bottom-up synthesis of defect-free mixed-matrix membranes by using polymergrafted metal-organic polyhedra. Chem. Lett. 2019, 48, 597-600.  doi: 10.1246/cl.190131

    65. [65]

      Xie, X. Y.; Wu, F.; Liu, X.; Tao, W. Q.; Jiang, Y.; Liu, X. Q.; Sun, L. B. Photopolymerization of metal-organic polyhedra: an efficient approach to improve the hydrostability, dispersity, and processability. Chem. Commun. 2019, 55, 6177-6180.  doi: 10.1039/C9CC01745C

    66. [66]

      Yan, Q. Q.; Zhou, L. P.; Zhou, H. Y.; Wang, Z.; Cai, L. X.; Guo, X. Q.; Sun, X. Q.; Sun, Q. F. Metallopolymers cross-linked with self-assembled Ln4L4 cages. Dalton Trans. 2019, 48, 7080-7084.

    67. [67]

      Yun, Y. N.; Sohail, M.; Moon, J. H.; Kim, T. W.; Park, K. M.; Chun, D. H.; Park, Y. C.; Cho, C. H.; Kim, H. Defect-free mixed-matrix membranes with hydrophilic metal-organic polyhedra for efficient carbon dioxide separation. Chem. Asian J. 2018, 13, 631-635.  doi: 10.1002/asia.201701647

    68. [68]

      Zhu, B.; He, S.; Wu, Y.; Li, S.; Shao, L. One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture. Engineering 2022, DOI:10.1016/j.eng.2022.03.016.  doi: 10.1016/j.eng.2022.03.016

    69. [69]

      Liu, J.; Fulong, C. R. P.; Hu, L.; Huang, L.; Zhang, G.; Cook, T. R.; Lin, H. Interpenetrating networks of mixed matrix materials comprising metalorganic polyhedra for membrane CO2 capture. J. Membr. Sci. 2020, 606, 118122.  doi: 10.1016/j.memsci.2020.118122

    70. [70]

      Sohail, M.; An, H.; Choi, W.; Singh, J.; Yim, K.; Kim, B. -H.; Park, Y. C.; Lee, J. S.; Kim, H. Sorption-enhanced thin film composites with metalorganic polyhedral nanocages for CO2 separation. J. Membr. Sci. 2021, 620, 118826.  doi: 10.1016/j.memsci.2020.118826

    71. [71]

      Liu, G.; Yang, Z.; Zhou, M.; Wang, Y.; Yuan, D.; Zhao, D. Heterogeneous postassembly modification of zirconium metal-organic cages in supramolecular frameworks. Chem. Commun. 2021, 57, 6276-6279.  doi: 10.1039/D1CC01606G

    72. [72]

      Yang, Z.; Liu, G.; Yuan, Y. D.; Peh, S. B.; Ying, Y.; Fan, W.; Yu, X.; Yang, H.; Wu, Z.; Zhao, D. Homoporous hybrid membranes containing metal-organic cages for gas separation. J. Membr. Sci. 2021, 636, 119564.  doi: 10.1016/j.memsci.2021.119564

    73. [73]

      Xiang, L.; Sheng, L.; Wang, C.; Zhang, L.; Pan, Y.; Li, Y. Aminofunctionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv. Mater. 2017, 29, 1606999.  doi: 10.1002/adma.201606999

    74. [74]

      Yao, M. S.; Lv, X. J.; Fu, Z. H.; Li, W. H.; Deng, W. H.; Wu, G. D.; Xu, G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. 2017, 56, 16510-16514.  doi: 10.1002/anie.201709558

    75. [75]

      Yao, J.; Dong, D.; Li, D.; He, L.; Xu, G.; Wang, H. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 2011, 47, 2559-2561.  doi: 10.1039/c0cc04734a

    76. [76]

      Huang, K.; Li, Q.; Liu, G.; Shen, J.; Guan, K.; Jin, W. A ZIF-71 hollow fiber membrane fabricated by contra-diffusion. ACS Appl. Mater. Interfaces 2015, 7, 16157-16160.  doi: 10.1021/acsami.5b04991

    77. [77]

      Duan, P.; Moreton, J. C.; Tavares, S. R.; Semino, R.; Maurin, G.; Cohen, S. M.; Schmidt-Rohr, K. Polymer Infiltration into metal-organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 2019, 141, 7589-7595.  doi: 10.1021/jacs.9b02789

    78. [78]

      Joseph, A. I.; Lapidus, S. H.; Kane, C. M.; Holman, K. T. Extreme confinement of xenon by cryptophane-111 in the solid state. Angew. Chem. Int. Ed. 2015, 54, 1471-1475.  doi: 10.1002/anie.201409415

    79. [79]

      Sun, Q. F.; Iwasa, J.; Ogawa, D.; Ishido, Y.; Sato, S.; Ozeki, T.; Sei, Y.; Yamaguchi, K.; Fujita, M. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 2010, 328, 1144-1147.  doi: 10.1126/science.1188605

    80. [80]

      Cai, L. X.; Li, S. C.; Yan, D. N.; Zhou, L. P.; Guo, F.; Sun, Q. F. Water-soluble redox-active cage hosting polyoxometalates for selective desulfurization catalysis. J. Am. Chem. Soc. 2018, 140, 4869-4876.  doi: 10.1021/jacs.8b00394

    81. [81]

      Andres, M. A.; Carne-Sanchez, A.; Sanchez-Lainez, J.; Roubeau, O.; Coronas, J.; Maspoch, D.; Gascon, I. Ultrathin films of porous metalorganic polyhedra for gas separation. Chem. Eur. J. 2020, 26, 143-147.  doi: 10.1002/chem.201904141

    82. [82]

      Liu, L.; Wang, N.; Liu, H. -X.; Shu, L.; Xie, Y. -B.; Li, J. -R.; An, Q. -F. Nano-array assisted metal-organic polyhedra membranes for the pervaporation of aromatic/aliphatic mixtures. J. Membr. Sci. 2019, 575, 1-8.  doi: 10.1016/j.memsci.2018.12.081

  • 加载中
    1. [1]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    6. [6]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    7. [7]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    8. [8]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    9. [9]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    10. [10]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    11. [11]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    12. [12]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    16. [16]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    17. [17]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    18. [18]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    19. [19]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    20. [20]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

Metrics
  • PDF Downloads(7)
  • Abstract views(369)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return