Citation: Xiuting Gao, Nana Chen, Minglei Cao, Yang Shi, Qingfu Zhang. A Water-Stable 3D Eu(Ⅲ)-Organic Framework as a Bi-Functional Ratiometric Luminescent Sensor for Fast, Sensitive and Selective Detection of ODZ and Hg2+ in Aqueous Media[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221111. doi: 10.14102/j.cnki.0254-5861.2022-0171 shu

A Water-Stable 3D Eu(Ⅲ)-Organic Framework as a Bi-Functional Ratiometric Luminescent Sensor for Fast, Sensitive and Selective Detection of ODZ and Hg2+ in Aqueous Media

  • Corresponding author: Qingfu Zhang, zhangqingfu@lcu.edu.cn
  • Received Date: 22 July 2022
    Accepted Date: 22 August 2022
    Available Online: 30 August 2022

Figures(9)

  • The fast, sensitive and selective detection of some antibiotics and heavy metal cations in water is highly desirable for environmental protection and human health, but it is still currently challenging. In this work, a new luminescent Eu(III)-based metal-organic framework (MOF), {[(CH3)2NH2][Eu(L)2(H2O)2]·xDMF}n (1) [H2L = 4, 4'-((naphthalene-1, 4-dicarbonyl)bis(azanediyl))dibenzoic acid], was solvothermally synthesized. Complex 1 exhibits good water stability and luminescent property and could serve as a bi-functional ratiometric luminescent sensor for fast, sensitive and selective detection of ornidazole (ODZ) and Hg2+ in aqueous solution. The corresponding luminescent mechanism has also been discussed. This work indicates that 1 as a promising luminescent material exhibits luminescent quenching behavior for ODZ and luminescent enhancement behavior for Hg2+ in H2O, which will promote the practical application of Ln-MOF-based ratiometric luminescent sensors in monitoring antibiotics and metal ions pollutants in the environmental water matrices.
  • 加载中
    1. [1]

      Liu, X.; Steele, J. C.; Meng, X. Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review. Environ. Pollut. 2017, 223, 161-169.  doi: 10.1016/j.envpol.2017.01.003

    2. [2]

      Wang, J. L.; Zhuan, R.; Chu, L. B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview. Sci. Total Environ. 2019, 646, 1385-1397.  doi: 10.1016/j.scitotenv.2018.07.415

    3. [3]

      Zhang, Q. Q.; Ying, G. G.; Pan, C. G.; Liu, Y. S.; Zhao, J. L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772-6782.  doi: 10.1021/acs.est.5b00729

    4. [4]

      Kümmerer, K. Antibiotics in the aquatic environment-a review-part I. Chemosphere 2009, 75, 417-434.  doi: 10.1016/j.chemosphere.2008.11.086

    5. [5]

      Grandjean, P.; Landrigan, P. J. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167-2178.  doi: 10.1016/S0140-6736(06)69665-7

    6. [6]

      Toussaint, B.; Chedin, M.; Vincent, U.; Bordin, G.; Rodriguez, A. R. Determination of (fluoro)quinolone antibiotic residues in pig kidney using liquid chromatography-tandem mass spectrometry part II: intercomparison exercise. J. Chromatogr. A 2005, 1088, 40-48.  doi: 10.1016/j.chroma.2005.02.016

    7. [7]

      Tabrizchi, M.; ILbeigi, V. Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater. 2010, 176, 692-696.  doi: 10.1016/j.jhazmat.2009.11.087

    8. [8]

      Pérez-Fernández, V.; Domínguez-Vega, E.; Crego, A. L.; Ángeles García, M.; Marina, M. L. Recent advances in the analysis of antibiotics by CE and CEC. Electrophoresis 2012, 33, 127-146.  doi: 10.1002/elps.201100409

    9. [9]

      Cheng, Y. J.; Huang, S. H.; Singco, B.; Huang, H. Y. Analyses of sulfonamide antibiotics in meat samples by on-line concentration capillary electrochromatography-mass spectrometry. J. Chromatogr. A 2011, 1218, 7640-7647.  doi: 10.1016/j.chroma.2011.06.027

    10. [10]

      Zheng, W.; Zhou, S. Y.; Chen, Z.; Hu, P.; Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Huang, M. D.; Chen, X. Y. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. Angew. Chem. Int. Ed. 2013, 52, 6671-6676.  doi: 10.1002/anie.201302481

    11. [11]

      Zhang, M. R.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z. L.; Wei, J. J.; Gao, Y.; Zhou, S. Y.; Li, X. J.; Chen, X. Y. A new class of blue-LED-excitable NIR-II luminescent nanoprobes based on lanthanide-doped CaS nanoparticles. Angew. Chem. Int. Ed. 2019, 58, 9556-9560.  doi: 10.1002/anie.201905040

    12. [12]

      Zhang, C. G.; Zhang, M. R.; Zheng, W.; Wei, J. J.; Wang, S. T.; Huang, P.; Cheng, X. W.; Dai, T.; Chen, Z.; Chen, X. Y. A new class of luminescent nanoprobes based on main-group Sb3+ emitters. Nano Res. 2022, 15, 179-185.  doi: 10.1007/s12274-021-3454-4

    13. [13]

      Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Lumine-scent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.  doi: 10.1039/b802352m

    14. [14]

      Rasheed, T.; Nabeel, F. Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coord. Chem. Rev. 2019, 401, 213065.  doi: 10.1016/j.ccr.2019.213065

    15. [15]

      Lu, Z. Q.; Li, Y. Z.; Hao, C.; Ru, Y.; Yang, S. J.; Zhang, N. D.; Fu, Y. Q.; Wu, W. L.; Zhou, Y. Synthesis, crystal structure and luminescent/magnetic properties of two metal-organic frameworks based on multi-N/O-donor mixed ligands. Chin. J. Struct. Chem. 2021, 40, 1122-1130.

    16. [16]

      Yin, Y. J.; Fang, W. J.; Liu, S. Q.; Chen, J.; Zhang, J. J.; Ni, A. Y. A new bio-metal-organic framework: synthesis, crystal structure and selectively sensing of Fe(III) Ion in aqueous medium. Chin. J. Struct. Chem. 2021, 40, 1456-1460.

    17. [17]

      Wang, N.; Zhou, M. S.; Li, T.; Fu, H. R.; Li, F. F. Synthesis and detection of pesticides of luminescent metal-organic framework based on carboxyl-decorating tetraphenylethylene. Chin. J. Struct. Chem. 2020, 39, 1496-1502.

    18. [18]

      Chen, L.; Liu, D. H.; Peng, J.; Du, Q. Z.; He, H. Ratiometric fluorescence sensing of metal-organic frameworks: tactics and perspectives. Coord. Chem. Rev. 2020, 404, 213113.  doi: 10.1016/j.ccr.2019.213113

    19. [19]

      Yan, B. Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 2017, 50, 2789-2798.  doi: 10.1021/acs.accounts.7b00387

    20. [20]

      Yang, L.; Song, Y. H.; Wang, L. Multi-emission metal-organic framework composites for multicomponent ratiometric fluorescence sensing: recent developments and future challenges. J. Mater. Chem. B 2020, 8, 3292-3315.  doi: 10.1039/C9TB01931F

    21. [21]

      Yin, H. Q.; Yin, X. B. Metal-organic frameworks with multiple luminescence emissions: designs and applications. Acc. Chem. Res. 2020, 53, 485-495.  doi: 10.1021/acs.accounts.9b00575

    22. [22]

      Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871.  doi: 10.1002/adma.201805871

    23. [23]

      (a) Li, Y.; Pang, J. D.; Bu, X. H. Multi-functional metal-organic frameworks for detection and removal of water pollutions. Chem. Commun. 2022, 58, 7890-7908; (b) Yang, Y.; Pang, J. D.; Li, Y. W.; Sun, L.; Zhang, H.; Zhang, L. Y.; Xu, S. T.; Jiang, T. W. Fabrication of a stable europium-based luminescent sensor for fast detection of urinary 1‑hydroxypyrene constructed from a tetracarboxylate ligand. Inorg. Chem. 2021, 60, 19189-19196.

    24. [24]

      Yang, Y.; Chen, L.; Jiang, F. L.; Wu, M. Y.; Pang, J. D.; Wan, X. Y.; Hong, M. C. A water-stable 3D Eu-MOF based on a metallacyclodimeric secondary building unit for sensitive fluorescent detection of acetone molecules. CrystEngComm 2019, 21, 321-328.  doi: 10.1039/C8CE01875H

    25. [25]

      Shu, Y.; Ye, Q. Y.; Dai, T.; Xu, Q.; Hu, X. Y. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing. ACS Sens. 2021, 6, 641-658.  doi: 10.1021/acssensors.0c02562

    26. [26]

      Zhang, X.; Hu, Q.; Xia, T. F.; Zhang, J.; Yang, Y.; Cui, Y. J.; Chen, B. L.; Qian, G. D. Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks. ACS Appl. Mater. Interfaces 2016, 8, 32259-32265.  doi: 10.1021/acsami.6b12118

    27. [27]

      Zeng, X. L.; Hu, J.; Zhang, M.; Wang, F. L.; Wu, L.; Hou, X. D. Visual detection of fluoride anions using mixed lanthanide metal-organic frameworks with a smartphone. Anal. Chem. 2020, 92, 2097-2102.  doi: 10.1021/acs.analchem.9b04598

    28. [28]

      Yu, L.; Zheng, Q. T.; Wang, H.; Liu, C. X.; Huang, X. Q.; Xiao, Y. X. Double-color lanthanide metal-organic framework based logic device and visual ratiometric fluorescence water microsensor for solid pharmaceuticals. Anal. Chem. 2020, 92, 1402-1408.  doi: 10.1021/acs.analchem.9b04575

    29. [29]

      (a) Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 2005, 249, 1693-1708; (b) Cirera, J.; Ruiz, E.; Alvarez, S. Shape and spin state in four-coordinate transition-metal complexes: the case of the d6 configuration. Chem. Eur. J. 2006, 12, 3162-3167.

    30. [30]

      Lin, Z. J.; Yang, Z.; Liu, T. F.; Huang, Y. B.; Cao, R. Microwaveassisted synthesis of a series of lanthanide metal-organic frameworks and gas sorption properties. Inorg. Chem. 2012, 51, 1813-1820.  doi: 10.1021/ic202082w

    31. [31]

      Burrows, A. D.; Cassar, K.; Düren, T.; Friend, R. M. W.; Mahon, M. F.; Rigby, S. P.; Savarese, T. L. Syntheses, structures and properties of cadmium benzenedicarboxylate metal-organic frameworks. Dalton Trans. 2008, 2465-2474.

    32. [32]

      Spek, A. L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148-155.

    33. [33]

      Wang, X. H.; Lei, M. Y.; Zhang, T. J.; Zhang, Q. F.; Zhang, R. F.; Yang, M. A water-stable multi-responsive luminescent Zn-MOF sensor for detecting TNP, NZF and Cr2O72- in aqueous media. Dalton Trans. 2021, 50, 3816-3824.  doi: 10.1039/D0DT03049J

    34. [34]

      Zhang, Q. F.; Lei, M. Y.; Kong, F.; Yang, Y. A water-stable homochiral luminescent MOF constructed from an achiral acylamide-containing dicarboxylate ligand for enantioselective sensing of penicillamine. Chem. Commun. 2018, 54, 10901-10904.  doi: 10.1039/C8CC06274A

    35. [35]

      Hao, J. N.; Yan, B. Highly sensitive and selective fluorescent probe for Ag+ based on a Eu3+ post-functionalized metal-organic framework in aqueous media. J. Mater. Chem. A 2014, 2, 18018-18025.  doi: 10.1039/C4TA03990D

    36. [36]

      Zhang, X.; Luo, X.; Zhang, N. X.; Wu, J.; Huang, Y. Q. A highly selective and sensitive Zn(II) coordination polymer luminescent sensor for Al3+ and NACs in the aqueous phase. Inorg. Chem. Front. 2017, 4, 1888-1894.  doi: 10.1039/C7QI00549K

    37. [37]

      Cho, W.; Lee, H. J.; Choi, G.; Choi, S.; Oh, M. Dual changes in conformation and optical properties of fluorophores within a metal-organic framework during framework construction and associated sensing event. J. Am. Chem. Soc. 2014, 136, 12201-12204.  doi: 10.1021/ja504204d

    38. [38]

      Zhang, Q. F.; Lei, M. Y.; Yan, H.; Wang, J. Y.; Shi, Y. A water stable 3D luminescent metal-organic framework based on heterometallic [Eu6IIIZnII] clusters showing highly sensitive, selective, and reversible detection of ronidazole. Inorg. Chem. 2017, 56, 7610-7614.  doi: 10.1021/acs.inorgchem.7b01156

    39. [39]

      Arnaud, N.; Vaquer, E.; Georges, J. Comparative study of the luminescent properties of europium and terbium coordinated with thenoyltrifluoroacetone or pyridine-2, 6-dicarboxylic acid in aqueous solutions. Analyst 1998, 123, 261-265.  doi: 10.1039/a706522a

    40. [40]

      Tan, H. L.; Chen, Y. Ag+-enhanced fluorescence of lanthanide/nucleotide coordination polymers and Ag+ sensing. Chem. Commun. 2011, 47, 12373-12375.  doi: 10.1039/c1cc16003f

    41. [41]

      Tang, Q.; Liu, S. X.; Liu, Y. W.; Miao, J.; Li, S. J.; Zhang, L; Shi, Z.; Zheng, Z. P. Cation sensing by a luminescent metal-organic framework with multiple Lewis basic sites. Inorg. Chem. 2013, 52, 2799-2801.  doi: 10.1021/ic400029p

    42. [42]

      Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. Coordination polymers containing 1D channels as selective luminescent probes. J. Am. Chem. Soc. 2004, 126, 15394-15395.  doi: 10.1021/ja047141b

    43. [43]

      Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications. J. Am. Chem. Soc. 2004, 126, 12470-12476.  doi: 10.1021/ja0469333

    44. [44]

      Razavi, S. A. A.; Masoomi, M. Y.; Morsali, A. Double solvent sensing method for improving sensitivity and accuracy of Hg(II) detection based on different signal transduction of a tetrazine-functionalized pillared metalorganic framework. Inorg. Chem. 2017, 56, 9646-9652.  doi: 10.1021/acs.inorgchem.7b01155

    45. [45]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

    46. [46]

      Sluis, P. V. D.; Spek, A. L. BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Cryst. 1990, A46, 194-201.

  • 加载中
    1. [1]

      Xi Rong HUANG Wen Juan ZHANG Shu Hua HAN Gui Ying XU . A Highly Sensitive Kinetic Spectrophotometric System and Its Analytical Potential for Chromatographic Detection of Metal Ions. Chinese Chemical Letters, 1999, 10(1): 51-54.

    2. [2]

      Yi-Zhen YUANYun-Shang YANGYu-Chen ZHAOYing-Peng ZHANG . Organometallic Gels Based on Metal Ion Exchange for the Detection of Antibiotics and Nitroaromatic Compounds. Chinese Journal of Inorganic Chemistry, 2022, 38(6): 1121-1132. doi: 10.11862/CJIC.2022.126

    3. [3]

      Zeng-Hui LILiang HEYu-Jun GUOMing-Bu LUOQi-Pu LIN . A Stable Luminescent MOF Constructed by Bis-(4-pyridyl)thiazolo[5, 4-d]thiazole Containing Multi-electron Donor-acceptor Core. Chinese Journal of Structural Chemistry, 2021, 40(5): 610-614. doi: 10.14102/j.cnki.0254–5861.2011–2992

    4. [4]

      Zhao Jie CUI Jun Cheng LIU Lain Cun GAO Ying Qin WEI Jun Zeng ZHANG . Study on a New Method of Extraction of Metal Ions from Solid Matrices by Supercritical Fluid. Chinese Chemical Letters, 1999, 10(6): 525-528.

    5. [5]

      Shui Feng ZHANG Li Shi WANG Zhi DANG . A Compact System of Capacitively Coupled Contactless Conductivity Detection Based on the Square Wave Excitation Signal for Capillary Electrophoresis. Chinese Chemical Letters, 2006, 17(9): 1229-1232.

    6. [6]

      Xue-Ting WANGWei WEIKai ZHANGShao-Wu DU . Detection of Diethyl Ether by a Europium MOF through Fluorescence Enhancement. Chinese Journal of Structural Chemistry, 2021, 40(3): 369-375. doi: 10.14102/j.cnki.0254–5861.2011–2917

    7. [7]

      Yu ZHUWei-Qi LUODong-Mei HOUChu-Wen LIZheng-Zhou DUANQin-Yun XUGui-Cheng GAOJi-Jun TANG . Decorated BiOI on MIL-101(Fe)@BiOI derived BiFeO3@Fe2O3 for improved photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2023, 39(7): 1415-1428. doi: 10.11862/CJIC.2023.096

    8. [8]

      Yan YangShuting XuYanli GaiBo ZhangLian Chen . Recent Progresses in Lanthanide Metal-Organic Frameworks (Ln-MOFs) as Chemical Sensors for Ions, Antibiotics and Amino Acids. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211045-2211070. doi: 10.14102/j.cnki.0254-5861.2022-0138

    9. [9]

      Ying-Xin ZHAOHao HUXin ZHOUShui-Jin YANGYun YANG . Preparation and photocatalytic degradation performance of MOF-808/BiOCl composites. Chinese Journal of Inorganic Chemistry, 2023, 39(8): 1553-1563. doi: 10.11862/CJIC.2023.114

    10. [10]

      Dapeng Li Xiaojuan Wang Chao Zhu Zhaoxin Meng Liyan Zhang Guozan Yuan . Water-Stable Fluorescent Metal-Organic Frameworks for the Selective Detection of Aqueous-Phase FeIII, CrVI, and Antibiotics. Chinese Journal of Structural Chemistry, 2023, 42(6): 100094-100094. doi: 10.1016/j.cjsc.2023.100094

    11. [11]

      He YinghuiLiu YingjunGuo FanPang KaiFang BoWang YaChang DanXu ZhenGao Chao . Dynamic dispersion stability of graphene oxide with metal ions. Chinese Chemical Letters, 2020, 31(6): 1625-1629. doi: 10.1016/j.cclet.2019.10.010

    12. [12]

      Chao-Yang WangChong-Chen WangXiu-Wu ZhangXue-Ying RenBaoyi YuPeng WangZi-Xuan ZhaoHuifen Fu . A new Eu-MOF for ratiometrically fluorescent detection toward quinolone antibiotics and selective detection toward tetracycline antibiotics. Chinese Chemical Letters, 2022, 33(3): 1353-1357. doi: 10.1016/j.cclet.2021.08.095

    13. [13]

      CHEN Xinglian LIN Tao LIU Xingyong MEI Wenquan YANG Dongshun LI Yangang LI Maoxuan WANG Luxiang . Simultaneous determination of antibiotics and triphenylmethanes veterinary drug residues in fish and shrimp by dispersive solid phase extraction purification-ultra high performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography, 2019, 37(9): 946-954. doi: 10.3724/SP.J.1123.2019.02016

    14. [14]

      Li Jian JIANG Zhi Lin WANG Xiao Qing JIANG Qin Hui LUO . A New Fluorescent Sensor for Transition Metal Ions in Aqueous Solution. Chinese Chemical Letters, 2000, 11(6): 551-554.

    15. [15]

      Shao-Peng RongYa-Bing SunZe-Hua Zhao . Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge. Chinese Chemical Letters, 2014, 25(1): 187-192.

    16. [16]

      Ruyi ZhangLiangliang ZhuBingbing Yue . Luminescent properties and recent progress in applications of lanthanide metal-organic frameworks. Chinese Chemical Letters, 2023, 34(2): 108009-1-108009-13. doi: 10.1016/j.cclet.2022.108009

    17. [17]

      ZHU Zi-XinWANG Cui-JuanLIU ChengXIAO Yu-MeiLUO DanLIU Dong-NingWANG Yao-Yu . A Zn-MOF Luminescent Sensor for Selective Detection of Styrene. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1941-1947. doi: 10.11862/CJIC.2020.224

    18. [18]

      Xiang HanTiantian WuLanhui GuMinfeng ChenJianzhong SongDan TianJizhang Chen . Li-MOF-based ions regulator enabling fast-charging and dendrite-free lithium metal anode. Chinese Chemical Letters, 2023, 34(2): 107594-1-107594-6. doi: 10.1016/j.cclet.2022.06.017

    19. [19]

      LIU SisiDU JuanCHEN JingwenZHAO Hongxia . Determination of 19 antibiotic and 2 sulfonamide metabolite residues in wild fish muscle in mariculture areas of Laizhou Bay using accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography, 2014, 32(12): 1320-1325. doi: 10.3724/SP.J.1123.2014.08032

    20. [20]

      Jiajia LiZiwei ZhaoZhuoning LiHuijuan YangShijun YueYuping TangQizhao Wang . Construction of immobilized films photocatalysts with CdS clusters decorated by metal Cd and BiOCl for photocatalytic degradation of tetracycline antibiotics. Chinese Chemical Letters, 2022, 33(8): 3705-3708. doi: 10.1016/j.cclet.2021.10.080

Metrics
  • PDF Downloads(4)
  • Abstract views(287)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return