Citation: Cha Li, Zining Qiu, Hongming Sun, Yijie Yang, Cheng-Peng Li. Recent Progress in Covalent Organic Frameworks (COFs) for Electrocatalysis[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221108. doi: 10.14102/j.cnki.0254-5861.2022-0162 shu

Recent Progress in Covalent Organic Frameworks (COFs) for Electrocatalysis

  • Author Bio: Cha Li received his B.S. degree from Yichun University in 2019 and M.S. degree from Tianjin Normal University in 2022. Now, he is pursuing his Ph.D. degree at Nankai University. His current research focuses on the applications of crystalline porous materials in energy catalysis and functional devices
    Zining Qiu received her B.S. degree from Gannan Normal University in 2021 and is currently pursuing her master's degree. Her current research focuses on the design and application of electrocatalyst for hydrogen evolution reaction
    Hongming Sun received his B.E. degree from Shandong University of Technology in 2012 and M.S. degree from Tianjin Polytechnic University in 2015. He then joined Professor Fangyi Cheng's group in the College of Chemistry at Nankai University and received his Ph.D. degree in 2018. Now, he works in the College of Chemistry at Tianjin Normal University. His research focuses on developing transition-metal-based materials for electrocatalytic hydrogen evolution, hydrogen oxidation, nitrogen reduction and oxygen evolution
    Yijie Yang received her bachelor degree from Nankai University in 2013 and PhD degree from Nanyang Technological University in 2018. She then joined College of Chemistry, Tianjin Normal University. Her current research interests focus on the design and fabrication of novel composite nanostructures and their application as electrocatalysts
    Cheng-Peng Li was born in Shanxi Province, China (1981). He received his BS (2003) and MS (2006) from Tianjin Normal University and subsequently his PhD from Tianjin University (2009). He then joined the faculty at Tianjin Normal University and is now a Professor of Chemistry. He has worked with Prof. Wuzong Zhou at University of St Andrews. His current research lies in porous crystalline materials (MOFs, COFs, and HOFs) and their applications in adsorption and catalysis
  • Corresponding author: Hongming Sun, Cheng-Peng Li,
  • Received Date: 28 June 2022
    Accepted Date: 18 July 2022
    Available Online: 29 July 2022


  • Electrocatalysis provides various technologies for energy storage and conversion, which is an important part of realizing sustainable clean energy for the future. COFs, as emerging porous crystalline polymers, possess high specific surface areas, tunable pore structures, high crystallinity and tailorable functionalization. These features endow COFs with abundant active sites and fast electron transport channels, making them potentially efficient electrocatalysts. In recent years, COF-based electrocatalysts have been widely developed for hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), nitrogen reduction reaction (NRR) and carbon dioxide reduction reaction (CO2RR). In this review, design strategies of COF-based electrocatalysts are briefly summarized, including applying COF as supports, introducing active metals in COF, constructing two-dimensional conductive COF, formation of COF-based hybrid and pyrolysis of COF to obtain carbon materials. Then, the recent research progress in COF-derived catalysts for specific electrocatalytic reactions is introduced systematically. Finally, the outlook and challenges of future applications of COFs in electrocatalysis are highlighted.
  • 加载中
    1. [1]

      Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. Energy-Chem. 2021, 3, 100046.  doi: 10.1016/j.enchem.2020.100046

    2. [2]

      Guo, H.; Si, D. H.; Zhu, H. J.; Li, Q. X.; Huang, Y. B.; Cao, R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2022, 2, 295-303.  doi: 10.1016/j.esci.2022.03.007

    3. [3]

      Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102-109.  doi: 10.1016/j.esci.2021.12.007

    4. [4]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017, 355, 6321.

    5. [5]

      Li, N.; Si, D. H.; Wu, Q. J.; Wu, Q.; Huang, Y. B.; Cao, R. Boosting electrocatalytic CO2 reduction with conjugated bimetallic Co/Zn polyphthalocyanine frameworks. CCS Chem. 2022, DOI: 10.31635/ccschem.022.202201943.  doi: 10.31635/ccschem.022.202201943

    6. [6]

      McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347-4357.  doi: 10.1021/ja510442p

    7. [7]

      Liu, M.; Wei, C.; Zhuzhang, H.; Zhou, J.; Pan, Z.; Lin, W.; Yu, Z.; Zhang, G.; Wang, X. Fully condensed poly(triazine imide) crystals: extended pi-conjugation and structural defects for overall water splitting. Angew. Chem. Int. Ed. 2022, 61, e202113389.

    8. [8]

      Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; Wang, C.; Zhang, X.; Miller, J. T.; Sun, L.; Hou, J. Engineering single-atomic ruthenium catalytic sites on defective nickeliron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.  doi: 10.1038/s41467-021-24828-9

    9. [9]

      Oh, N. K.; Seo, J.; Lee, S.; Kim, H. J.; Kim, U.; Lee, J.; Han, Y. K.; Park, H. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 2021, 12, 4606.  doi: 10.1038/s41467-021-24829-8

    10. [10]

      Dai, L.; Chen, Z. N.; Li, L.; Yin, P.; Liu, Z.; Zhang, H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv. Mater. 2020, 32, 1906915.  doi: 10.1002/adma.201906915

    11. [11]

      Yu, Y.; Zhou, J.; Sun, Z. Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 2020, 30, 2000570.  doi: 10.1002/adfm.202000570

    12. [12]

      Kim, S.; Koratkar, N.; Karabacak, T.; Lu, T. -M. Water electrolysis activated by Ru nanorod array electrodes. Appl. Phys. Lett. 2006, 88, 263106.  doi: 10.1063/1.2218042

    13. [13]

      Wang, T.; Cao, X; Jiao, L. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience. 2021, 1, 69-74.  doi: 10.1016/j.esci.2021.09.002

    14. [14]

      Zhang, Q.; Wang, Y.; Wang, Y.; Yang, S.; Wu, X.; Lv, B.; Wang, N.; Gao, Y.; Xu, X.; Lei, H.; Cao, R. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 3807-3810.  doi: 10.1016/j.cclet.2021.04.048

    15. [15]

      Wang, W.; Wang, Z.; Hu, Y.; Liu, Y.; Chen, S. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience. 2022, Doi:  doi: 10.1016/j.esci.2022.04.004

    16. [16]

      Guo, X.; Wan, X.; Liu, Q.; Liu, Y.; Li, W.; Shui, J. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience. 2022, doi. org/10.1016/j. esci. 2022.04.002.  doi: 10.1016/j.esci.2022.04.002

    17. [17]

      Long, X.; Meng, J.; Gu, J.; Ling, L.; Li, Q.; Liu, N.; Wang, K.; Li, Z. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2204046-2204053.

    18. [18]

      He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metalorganic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2022, 9, nwab157.  doi: 10.1093/nsr/nwab157

    19. [19]

      Niu, J.; Shao, R.; Liu, M.; Zan, Y.; Dou, M.; Liu, J.; Zhang, Z.; Huang, Y.; Wang, F. Porous carbons derived from collagen-enriched biomass: tailored design, synthesis, and application in electrochemical energy storage and conversion. Adv. Funct. Mater. 2019, 29, 1905095.  doi: 10.1002/adfm.201905095

    20. [20]

      Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 2020, 120, 8814-8933.  doi: 10.1021/acs.chemrev.9b00550

    21. [21]

      Xu, S.; Zhang, Q. Recent progress in covalent organic frameworks as light-emitting materials. Mater. Today Energy 2021, 20, 100635.  doi: 10.1016/j.mtener.2020.100635

    22. [22]

      Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-1170.  doi: 10.1126/science.1120411

    23. [23]

      Wang, P. L.; Ding, S. Y.; Zhang, Z. C.; Wang, Z. P.; Wang, W. Constructing robust covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc. 2019, 141, 18004-18008.  doi: 10.1021/jacs.9b10625

    24. [24]

      Huang, X.; Sun, C.; Feng, X. Crystallinity and stability of covalent organic frameworks. Sci. China Chem. 2020, 63, 1367-1390.  doi: 10.1007/s11426-020-9836-x

    25. [25]

      Tan, K. T.; Tao, S.; Huang, N.; Jiang, D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat. Commun. 2021, 12, 6747.  doi: 10.1038/s41467-021-27128-4

    26. [26]

      Li, D.; Li, C.; Zhang, L.; Li, H.; Zhu, L.; Yang, D.; Fang, Q.; Qiu, S.; Yao, X. Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 2020, 142, 8104-8108.  doi: 10.1021/jacs.0c02225

    27. [27]

      Zhao, X.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 2019, 141, 6623-6630.  doi: 10.1021/jacs.9b01226

    28. [28]

      Zhong, H.; Wang, M.; Ghorbani-Asl, M.; Zhang, J.; Ly, K. H.; Liao, Z.; Chen, G.; Wei, Y.; Biswal, B. P.; Zschech, E.; Weidinger, I. M.; Krasheninnikov, A. V.; Dong, R.; Feng, X. Boosting the electrocatalytic conversion of nitrogen to ammonia on metal-phthalocyanine-based two-dimensional conjugated covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 19992-20000.  doi: 10.1021/jacs.1c11158

    29. [29]

      Kamai, R.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Oxygentolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 2016, 55, 13184-13188.  doi: 10.1002/anie.201607741

    30. [30]

      Bhunia, S.; Das, S. K.; Jana, R.; Peter, S. C.; Bhattacharya, S.; Addicoat, M.; Bhaumik, A.; Pradhan, A. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl. Mater. Interfaces 2017, 9, 23843-23851.  doi: 10.1021/acsami.7b06968

    31. [31]

      Lin, C. Y.; Zhang, D. T.; Zhao, Z. H.; Xia, Z. H. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 2018, 30, 1801726.  doi: 10.1002/adma.201801726

    32. [32]

      Bleier, G. C.; Watt, J.; Simocko, C. K.; Lavin, J. M.; Huber, D. L. Reversible magnetic agglomeration: a mechanism for thermodynamic control over nanoparticle size. Angew. Chem. Int. Ed. 2018, 57, 7678-7681.  doi: 10.1002/anie.201800959

    33. [33]

      Lee, H.; Nedrygailov, II; Lee, C.; Somorjai, G. A.; Park, J. Y. Chemical-reaction-induced hot electron flows on platinum colloid nanoparticles under hydrogen oxidation: impact of nanoparticle size. Angew. Chem. Int. Ed. 2015, 54, 2340-2344.  doi: 10.1002/anie.201410951

    34. [34]

      Fox, E. K.; El Haddassi, F.; Hierrezuelo, J.; Ninjbadgar, T.; Stolarczyk, J. K.; Merlin, J.; Brougham, D. F. Size-controlled nanoparticle clusters of narrow size-polydispersity formed using multiple particle types through competitive stabilizer desorption to a liquid-liquid Interface. Small 2018, 14, 1802278.  doi: 10.1002/smll.201802278

    35. [35]

      Yang, H.; Liu, Y.; Liu, X.; Wang, X.; Tian, H.; Waterhouse, G. I. N.; Kruger, P. E.; Telfer, S. G.; Ma, S. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2022, 2, 227-234.  doi: 10.1016/j.esci.2022.02.005

    36. [36]

      Cao, Y.; Peng, W.; Li, Y.; Zhang, F.; Zhu, Y.; Fan, X. Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion. Green Energy & Environment. 2021. doi. org/10.1016/j. gee. 2021.11.005.  doi: 10.1016/j.gee.2021.11.005

    37. [37]

      Gunasekar, G. H.; Park, K.; Ganesan, V.; Lee, K.; Kim, N. -K.; Jung, K. -D.; Yoon, S. A covalent triazine framework, functionalized with Ir/Nheterocyclic carbene sites, for the efficient hydrogenation of CO2 to formate. Chem. Mater. 2017, 29, 6740-6748.  doi: 10.1021/acs.chemmater.7b01539

    38. [38]

      Hosokawa, T.; Tsuji, M.; Tsuchida, K.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. J. Mater. Chem. A 2021, 9, 11073-11080.  doi: 10.1039/D1TA00396H

    39. [39]

      Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208-1213.  doi: 10.1126/science.aac8343

    40. [40]

      Yusran, Y.; Li, H.; Guan, X.; Li, D.; Tang, L.; Xue, M.; Zhuang, Z.; Yan, Y.; Valtchev, V.; Qiu, S.; Fang, Q. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, 1907289.  doi: 10.1002/adma.201907289

    41. [41]

      Ruidas, S.; Mohanty, B.; Bhanja, P.; Erakulan, E. S.; Thapa, R.; Das, P.; Chowdhury, A.; Mandal, S. K.; Jena, B. K.; Bhaumik, A. Metalfree triazine-based 2D covalent organic framework for efficient H2 evolution by electrochemical water splitting. Chemsuschem. 2021, 14, 5057-5064.  doi: 10.1002/cssc.202101663

    42. [42]

      Jin, E.; Fu, S.; Hanayama, H.; Addicoat, M. A.; Wei, W.; Chen, Q.; Graf, R.; Landfester, K.; Bonn, M.; Zhang, K. A. I.; Wang, H. I.; Mullen, K.; Narita, A. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. 2022, 61, e202114059.

    43. [43]

      Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. Chem. Commun. 2014, 50, 4788-4790.  doi: 10.1039/C4CC01002G

    44. [44]

      Guo, J.; Lin, C. Y.; Xia, Z.; Xiang, Z. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem. Int. Ed. 2018, 57, 12567-12572.  doi: 10.1002/anie.201808226

    45. [45]

      Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. Carbon nanotubetemplated synthesis of covalent porphyrin network for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 6348-6354.  doi: 10.1021/ja500984k

    46. [46]

      Li, C.; Xi, Z.; Guo, D.; Chen, X.; Yin, L. Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 2018, 14, 1701986.  doi: 10.1002/smll.201701986

    47. [47]

      Liu, M.; Xu, Q.; Miao, Q.; Yang, S.; Wu, P.; Liu, G.; He, J.; Yu, C.; Zeng, G. Atomic Co-N4 and Co nanoparticles confined in COF@ZIF-67 derived core-shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. J. Mater. Chem. A 2022, 10, 228-233.  doi: 10.1039/D1TA08325B

    48. [48]

      Guo, C.; Duan, F.; Zhang, S.; He, L.; Wang, M.; Chen, J.; Zhang, J.; Jia, Q.; Zhang, Z.; Du, M. Heterostructured hybrids of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). J. Mater. Chem. A 2022, 10, 475-507.  doi: 10.1039/D1TA06006F

    49. [49]

      Zhao, W.; Jin, B.; Wang, L.; Ding, C.; Jiang, M.; Chen, T.; Bi, S.; Liu, S.; Zhao, Q. Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chin. Chem. Lett. 2022, 33, 557-561.  doi: 10.1016/j.cclet.2021.07.035

    50. [50]

      Li, D.; Park, E. J.; Zhu, W.; Shi, Q.; Zhou, Y.; Tian, H.; Lin, Y.; Serov, A.; Zulevi, B.; Baca, E. D.; Fujimoto, C.; Chung, H. T.; Kim, Y. S. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 2020, 5, 378-385.  doi: 10.1038/s41560-020-0577-x

    51. [51]

      Wang, L.; Bellini, M.; Miller, H. A.; Varcoe, J. R. A high conductivity ultrathin anion-exchange membrane with 500+ h alkali stability for use in alkaline membrane fuel cells that can achieve 2 W cm-2 at 80 ℃. J. Mater. Chem. A 2018, 6, 15404-15412.  doi: 10.1039/C8TA04783A

    52. [52]

      Yang, F.; Han, P.; Yao, N.; Cheng, G.; Chen, S.; Luo, W. Interregulated d-band centers of the Ni3B/Ni heterostructure for boosting hydrogen electrooxidation in alkaline media. Chem. Sci. 2020, 11, 12118-12123.  doi: 10.1039/D0SC03917A

    53. [53]

      Sun, H.; Tian, C.; Fan, G.; Qi, J.; Liu, Z.; Yan, Z.; Cheng, F.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.  doi: 10.1002/adfm.201910596

    54. [54]

      Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 2015, 54, 52-65.  doi: 10.1002/anie.201407031

    55. [55]

      Patra, B. C.; Khilari, S.; Manna, R. N.; Mondal, S.; Pradhan, D.; Pradhan, A.; Bhaumik, A. A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 2017, 7, 6120-6127.  doi: 10.1021/acscatal.7b01067

    56. [56]

      Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 2016, 7, 4176-4181.  doi: 10.1039/C6PY00561F

    57. [57]

      Zhao, Y. X.; Liang, Y.; Wu, D. X.; Tian, H.; Xia, T.; Wang, W. X.; Xie, W. Y.; Hu, X. M.; Tian, X. L.; Chen, Q. Ruthenium complex of sp2 carbonconjugated covalent organic frameworks as an efficient electrocatalyst for hydrogen evolution. Small 2022, 18, 2107750.  doi: 10.1002/smll.202107750

    58. [58]

      Durst, J.; Siebel, A.; Simon, C.; Hasche, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255-2260.  doi: 10.1039/C4EE00440J

    59. [59]

      Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300-306.

    60. [60]

      Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M.; Shao, M. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711-718.

    61. [61]

      Jia, H.; Yao, Y.; Gao, Y.; Lu, D.; Du, P. Pyrolyzed cobalt porphyrinbased conjugated mesoporous polymers as bifunctional catalysts for hydrogen production and oxygen evolution in water. Chem. Commun. 2016, 52, 13483-13486.

    62. [62]

      Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. 2019, 58, 1376-1381.

    63. [63]

      Maiti, S.; Chowdhury, A. R.; Das, A. K. Electrochemically facile hydrogen evolution using ruthenium encapsulated two dimensional covalent organic framework (2D COF). ChemNanoMat. 2019, 6, 99-106.

    64. [64]

      Kong, F.; Fan, X.; Kong, A.; Zhou, Z.; Zhang, X.; Shan, Y. Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-Co doped carbons as highly efficient trifunctional electrocatalysts. Adv. Funct. Mater. 2018, 28, 1803973.

    65. [65]

      Ranjeesh, K. C.; Illathvalappil, R.; Wakchaure, V. C.; Goudappagouda; Kurungot, S.; Babu, S. S. Metalloporphyrin two-dimensional polymers via metal-catalyst-free C-C bond formation for efficient catalytic hydrogen evolution. ACS Appl. Energy Mater. 2018, 1, 6442-6450.

    66. [66]

      Yang, C.; Tao, S. S.; Huang, N.; Zhang, X. B.; Duan, J.; Makiura, R.; Maenosono, S. Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 5481-5488.

    67. [67]

      Rao, P.; Wu, D.; Wang, T. -J.; Li, J.; Deng, P.; Chen, Q.; Shen, Y.; Chen, Y.; Tian, X. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, doi. org/10.1016/j. esci. 2022.05.004.  doi: 10.1016/j.esci.2022.05.004

    68. [68]

      Han, L.; Dong, S.; Wang, E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266-9291.

    69. [69]

      Fu, C. L.; Wang, Y.; Huang, J. H. Hybrid of quaternary layered double hydroxides and carbon nanotubes for oxygen evolution reaction. Chin. J. Struct. Chem. 2020, 39, 1807-1816.

    70. [70]

      Mou, Q.; Wang, X.; Xu, Z.; Zul, P.; Li, E.; Zhao, P.; Liu, X.; Li, H.; Cheng, G. A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation. Chin. Chem. Lett. 2022, 33, 562-566.

    71. [71]

      Deng, B.; Liang, J.; Yue, L.; Li, T.; Liu, Q.; Liu, Y.; Gao, S.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y.; Sun, X. CoFe-LDH nanowire arrays on graphite felt: a high-performance oxygen evolution electrocatalyst in alkaline media. Chin. Chem. Lett. 2022, 33, 890-892.

    72. [72]

      Chen, K.; Mao, K.; Bai, Y.; Duan, D.; Chen, S.; Wang, C.; Zhang, N.; Long, R.; Wu, X.; Song, L.; Xiong, Y. Phosphate-induced interfacial electronic engineering in VPO4-Ni2P heterostructure for improved electrochemical water oxidation. Chin. Chem. Lett. 2022, 33, 452-456.

    73. [73]

      Lu, X. F.; Liao, P. Q.; Wang, J. W.; Wu, J. X.; Chen, X. W.; He, C. T.; Zhang, J. P.; Li, G. R.; Chen, X. M. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 8336-8339.

    74. [74]

      Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623-5630.

    75. [75]

      Yang, C.; Yang, Z. -D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. -M.; Zhang, G. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251-2258.

    76. [76]

      Riha, S. C.; Klahr, B. M.; Tyo, E. C.; Seifert, S.; Vajda, S.; Pellin, M. J.; Hamann, T. W.; Martinson, A. B. F. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 2013, 7, 2396-2405.

    77. [77]

      Jia, H.; Sun, Z.; Jiang, D.; Du, P. Covalent cobalt porphyrin framework on multi-walled carbon nanotubes for efficient water oxidation at low overpotential. Chem. Mater. 2015, 27, 4586-4593.

    78. [78]

      Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 2016, 28, 4375-4379.

    79. [79]

      Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Low-overpotential electrocatalytic water splitting with noble-metal-free nanoparticles supported in a sp3 N-rich flexible COF. Adv. Energy Mater. 2016, 6, 1600110.

    80. [80]

      Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst. Adv. Energy Mater. 2016, 6, 1601189.

    81. [81]

      Fan, X.; Kong, F.; Kong, A.; Chen, A.; Zhou, Z.; Shan, Y. Covalent porphyrin framework-derived Fe2P@Fe4N-coupled nanoparticles embedded in N-doped carbons as efficient trifunctional electrocatalysts. ACS Appl. Mater. Interfaces 2017, 9, 32840-32850.

    82. [82]

      Singh, A.; Roy, S.; Das, C.; Samanta, D.; Maji, T. K. Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis. Chem. Commun. 2018, 54, 4465-4468.

    83. [83]

      Zhuang, G. -l.; Gao, Y. -F.; Zhou, X.; Tao, X. -Y.; Luo, J. -M.; Gao, Y. -J.; Yan, Y. -l.; Gao, P. -Y.; Zhong, X.; Wang, J. -G. ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem. Eng. J. 2017, 330, 1255-1264.

    84. [84]

      Yang, W. G.; Gong, Z. W.; Chen, Y. N.; Chen, R. R.; Meng, D. L.; Cao, M. N. Nitrogen doped carbon as efficient catalyst toward oxygen reduction reaction. Chin. J. Struct. Chem. 2020, 39, 287-293.

    85. [85]

      Cui, Y. Q.; Xu, J. X.; Wang, M. L.; Guan, L. H. Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity. Chin. J. Struct. Chem. 2021, 40, 533-539.

    86. [86]

      Wang, K.; Pang, Y. Y.; Xie, H.; Sun, Y.; Chai, G. L. Synergistic effect of Ta2O5/F-C composites for effective electrosynthesis of hydrogen peroxide from O2 reduction. Chin. J. Struct. Chem. 2021, 40, 225-232.

    87. [87]

      Song, Y.; Peng, Y.; Yao, S.; Zhang, P.; Wang, Y.; Gu, J.; Lu, T.; Zhang, Z. Co-POM@MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. Chin. Chem. Lett. 2022, 33, 1047-1050.

    88. [88]

      Royuela, S.; Martinez-Perinan, E.; Arrieta, M. P.; Martinez, J. I.; Ramos, M. M.; Zamora, F.; Lorenzo, E.; Segura, J. L. Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chem. Commun. 2020, 56, 1267-1270.

    89. [89]

      Xiang, Z.; Cao, D.; Huang, L.; Shui, J.; Wang, M.; Dai, L. Nitrogendoped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction. Adv. Mater. 2014, 26, 3315-3320.

    90. [90]

      Zuo, Q.; Cheng, G.; Luo, W. A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction. Dalton Trans. 2017, 46, 9344-9348.

    91. [91]

      Xu, Q.; Tang, Y.; Zhang, X.; Oshima, Y.; Chen, Q.; Jiang, D. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 2018, 30, 1706330.

    92. [92]

      Liu, W.; Wang, C.; Zhang, L.; Pan, H.; Liu, W.; Chen, J.; Yang, D.; Xiang, Y.; Wang, K.; Jiang, J.; Yao, X. Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. J. Mater. Chem. A 2019, 7, 3112-3119.

    93. [93]

      Chai, D.; Min, X.; Harada, T.; Nakanishi, S.; Zhang, X. Covalent triazine framework anchored with atomically dispersed iron as an efficient catalyst for advanced oxygen reduction. Colloids Surf. A 2021, 628, 127240.

    94. [94]

      Wang, Y.; Batmunkh, M.; Mao, H.; Li, H.; Jia, B.; Wu, S.; Liu, D.; Song, X.; Sun, Y.; Ma, T. Low-overpotential electrochemical ammonia synthesis using BiOCl-modified 2D titanium carbide MXene. Chin. Chem. Lett. 2022, 33, 394-398.

    95. [95]

      Li, S.; Liang, J.; Wei, P.; Liu, Q.; Xie, L.; Luo, Y.; Sun, X. ITO@TiO2 nanoarray: an efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, doi. org/10.1016/j. esci. 2022.04.008.  doi: 10.1016/j.esci.2022.04.008

    96. [96]

      Hong, Q. S.; Li, T. Y.; Zheng, S. S.; Chen, H. B.; Chu, H. H.; Xu, K. D.; Li, S. N.; Mei, Z. W.; Zhao, Q. H.; Ren, W. J.; Zhao, W. G.; Pan, P. Tuning double layer structure of WO3 nanobelt for promoting the electrochemical nitrogen reduction reaction in water. Chin. J. Struct. Chem. 2021, 40, 519-526.

    97. [97]

      Liu, S.; Wang, M.; Qian, T.; Ji, H.; Liu, J.; Yan, C. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.

    98. [98]

      Jiang, M.; Han, L.; Peng, P.; Hu, Y.; Xiong, Y.; Mi, C.; Tie, Z.; Xiang, Z.; Jin, Z. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis. Nano Lett. 2022, 22, 372-379.

    99. [99]

      Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.

    100. [100]

      Wu, Q.; Xie, R. K.; Mao, M. J.; Chai, G. L.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 2020, 5, 1005-1012.

  • 加载中
    1. [1]

      Chun Bo YU Hui YANG Tian Hong LU Yu Jiang WANG Kai Feng HUA Wei XING . Performance of Pt-TiO2 Electrocatalyst for CO Oxidation in the Electrochemical Gas Sensor. Chinese Chemical Letters, 2002, 13(5): 472-473.

    2. [2]

      DaiWen PANG Qi LU Min ZHANG Shen HU Zong Li WANG Jie Ke CHENG . A Special Property of DNA——as an Electrocatalyst. Chinese Chemical Letters, 1998, 9(3): 273-276.

    3. [3]

      Bi-Yun SUTing-Yu YANXiao-Teng LIDan-Dan PANPaison FAIDALi-Qin DING . Influence of the Substituents on Imino-aryl Ring of Mono(imino)pyrrole-Ni Complexes to Their Ethylene Polymerization Catalytic Performance. Chinese Journal of Structural Chemistry, 2020, 39(6): 1093-1102. doi: 10.14102/j.cnki.0254-5861.2011-2548

    4. [4]

      HUANG Li-HuaCHEN Yao-Qiang . Effect of Calcination Temperature on Three-Way Catalytic Performance of Pd/Ce0.65Zr0.35O2 Prepared by Soft-Hard Template Method. Chinese Journal of Inorganic Chemistry, 2020, 36(11): 2145-2156. doi: 10.11862/CJIC.2020.227

    5. [5]

      Sijia LiuMinghao LiuQing XuGaofeng Zeng . Lithium Ion Conduction in Covalent Organic Frameworks. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211003-2211017. doi: 10.14102/j.cnki.0254-5861.2022-0114

    6. [6]

      Mengyang ChenYe ZhouShi-Bin RenJiong Wang . Methods to Make Conductive Covalent Organic Frameworks for Electrocatalytic Applications. Chinese Journal of Structural Chemistry, 2022, 41(12): 2212107-2212119. doi: 10.14102/j.cnki.0254-5861.2022-0214

    7. [7]

      Chang-Pu WanJun-Dong YiRong CaoYuan-Biao Huang . Conductive Metal/Covalent Organic Frameworks for CO2 Electroreduction. Chinese Journal of Structural Chemistry, 2022, 41(5): 2205001-2205014. doi: 10.14102/j.cnki.0254-5861.2022-0075

    8. [8]

      Rong-Ge GUOYing-Li LIZe-Yuan HUMei-Yu SHIYi-Dong MIAOYan-Wei SUIJi-Qiu QIFu-Xiang WEIYao-Jian RENZhen-Zhen ZHANJin-Long LIUZhi SUNMei-Hua ZHOUDong-Mei MENGIn-Situ Growth of NiCo-Layered Double Hydroxides Nanosheets Deposited on Carbon Fiber Cloth for High-Performance Asymmetric Supercapacitors. Chinese Journal of Inorganic Chemistry, 2021, 37(5): 886-898. doi: 10.11862/CJIC.2021.078

    9. [9]

      YU Hai-FengWANG FangFENG TingLIU Shao-BingMA Fu-GuiYANG Meng-XinLIANG Peng-Ju . Zn-Doped Co9S8 Nanomaterials: Preparation and Application for Supercapacitor and Hydrogen Evolution Reaction of Electrocatalysis. Chinese Journal of Inorganic Chemistry, 2020, 36(7): 1318-1326. doi: 10.11862/CJIC.2020.147

    10. [10]

      YANG Xiao-KunCHEN A-LingYI Qing-Feng . Easy Preparation of N-Doped Graphene-like Nanosheets as Excellent Metal-Free Cathodic Electrocatalysts of Zn-Air Battery. Chinese Journal of Inorganic Chemistry, 2021, 37(1): 157-170. doi: 10.11862/CJIC.2021.001

    11. [11]

      ZHANG Yuan-YuanYI Qing-FengLI GuangZHOU Xiu-Lin . Carbon Nanotube-Supported Ternary Pd-Ag-Sn Catalysts for Formic Acid Electro-Oxidation. Chinese Journal of Inorganic Chemistry, 2018, 34(7): 1209-1220. doi: 10.11862/CJIC.2018.167

    12. [12]

      Xiaoxin LvGuoqing LiGaoteng ZhangKun FengJiujun DengJun Zhong . Soft X-Ray Absorption Spectroscopy of Advanced Two-Dimensional Photo/Electrocatalysts for Water Splitting. Chinese Journal of Structural Chemistry, 2022, 41(10): 2210016-2210028. doi: 10.14102/j.cnki.0254-5861.2022-0099

    13. [13]

      Xu YueWeixing ZhaoShuangyin WangYuqin Zou . Selective Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dihydroxymethylfuran on Bimetallic PdCu Alloy. Chinese Journal of Structural Chemistry, 2022, 41(5): 2205063-2205069. doi: 10.14102/j.cnki.0254-5861.2022-0074

    14. [14]

      Chang-Le FUYi WANGJun-Heng HUANG . Hybrid of Quaternary Layered Double Hydroxides and Carbon Nanotubes for Oxygen Evolution Reaction. Chinese Journal of Structural Chemistry, 2020, 39(10): 1807-1816. doi: 10.14102/j.cnki.0254–5861.2011–2729

    15. [15]

      Ni Xiao-LeiLiu JingLiu Ying-YaLeus KarenDepauw HannesWang An-JieVoort Pascal Van DerZhang JianHu Yong-Kang . Synthesis, characterization and catalytic performance of Mo based metal-organic frameworks in the epoxidation of propylene by cumene hydroperoxide. Chinese Chemical Letters, 2017, 28(5): 1057-1061. doi: 10.1016/j.cclet.2017.01.020

    16. [16]

      Zhangjie GuZhen ShanYulan WangJinjian WangTongtong LiuXiaoming LiZhiyang YuJian SuGen Zhang . Tuning the exciton binding energy of covalent organic frameworks for efficient photocatalysis. Chinese Chemical Letters, 2024, 35(2): 108356-. doi: 10.1016/j.cclet.2023.108356

    17. [17]

      Xiaofeng TanJun QinYan LiYuting ZengJindi GongGengxiu ZhengFeng FengHe Li . Intermetallic PdBi aerogels with improved catalytic performance for the degradation of organic pollutants in water. Chinese Chemical Letters, 2021, 32(4): 1451-1455. doi: 10.1016/j.cclet.2020.09.043

    18. [18]

      Yewei Ren Guosheng Zhou Ziyang Lu . Utilization of Porous Liquids for Catalytic Conversion. Chinese Journal of Structural Chemistry, 2023, 42(4): 100045-100045. doi: 10.1016/j.cjsc.2023.100045

    19. [19]

      ZHANG Hai-rongLIU Hong-yanPAN Qi-liangLIU Hui-junSHEN La-zhenCUI YueLIU Yi-dingZHANG TaoJIANG YuGUO Yong . Modification of the acidic and textural properties of ZSM-5 zeolite by using double mineralizers in synthesis and its catalytic performance in the conversion of methanol to propene. Journal of Fuel Chemistry and Technology, 2018, 46(8): 967-976.

    20. [20]

      Parsafard NastaranHasan Peyrovi MohammadParsafard Nasibeh . Effect of WOx promoter on Pt/ZrO2-HMS catalysts for n-heptane isomerization: Catalytic performance and kinetics study. Chinese Chemical Letters, 2017, 28(3): 546-552. doi: 10.1016/j.cclet.2016.10.028

  • PDF Downloads(27)
  • Abstract views(566)
  • HTML views(17)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint