Citation: Cha Li, Zining Qiu, Hongming Sun, Yijie Yang, Cheng-Peng Li. Recent Progress in Covalent Organic Frameworks (COFs) for Electrocatalysis[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221108. doi: 10.14102/j.cnki.0254-5861.2022-0162 shu

Recent Progress in Covalent Organic Frameworks (COFs) for Electrocatalysis






  • Author Bio: Cha Li received his B.S. degree from Yichun University in 2019 and M.S. degree from Tianjin Normal University in 2022. Now, he is pursuing his Ph.D. degree at Nankai University. His current research focuses on the applications of crystalline porous materials in energy catalysis and functional devices
    Zining Qiu received her B.S. degree from Gannan Normal University in 2021 and is currently pursuing her master's degree. Her current research focuses on the design and application of electrocatalyst for hydrogen evolution reaction
    Hongming Sun received his B.E. degree from Shandong University of Technology in 2012 and M.S. degree from Tianjin Polytechnic University in 2015. He then joined Professor Fangyi Cheng's group in the College of Chemistry at Nankai University and received his Ph.D. degree in 2018. Now, he works in the College of Chemistry at Tianjin Normal University. His research focuses on developing transition-metal-based materials for electrocatalytic hydrogen evolution, hydrogen oxidation, nitrogen reduction and oxygen evolution
    Yijie Yang received her bachelor degree from Nankai University in 2013 and PhD degree from Nanyang Technological University in 2018. She then joined College of Chemistry, Tianjin Normal University. Her current research interests focus on the design and fabrication of novel composite nanostructures and their application as electrocatalysts
    Cheng-Peng Li was born in Shanxi Province, China (1981). He received his BS (2003) and MS (2006) from Tianjin Normal University and subsequently his PhD from Tianjin University (2009). He then joined the faculty at Tianjin Normal University and is now a Professor of Chemistry. He has worked with Prof. Wuzong Zhou at University of St Andrews. His current research lies in porous crystalline materials (MOFs, COFs, and HOFs) and their applications in adsorption and catalysis
  • Corresponding author: Hongming Sun, hxxyshm@tjnu.edun.cn Cheng-Peng Li, hxxylcp@tjnu.edu.cn
  • Received Date: 28 June 2022
    Accepted Date: 18 July 2022
    Available Online: 29 July 2022

Figures(6)

  • Electrocatalysis provides various technologies for energy storage and conversion, which is an important part of realizing sustainable clean energy for the future. COFs, as emerging porous crystalline polymers, possess high specific surface areas, tunable pore structures, high crystallinity and tailorable functionalization. These features endow COFs with abundant active sites and fast electron transport channels, making them potentially efficient electrocatalysts. In recent years, COF-based electrocatalysts have been widely developed for hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), nitrogen reduction reaction (NRR) and carbon dioxide reduction reaction (CO2RR). In this review, design strategies of COF-based electrocatalysts are briefly summarized, including applying COF as supports, introducing active metals in COF, constructing two-dimensional conductive COF, formation of COF-based hybrid and pyrolysis of COF to obtain carbon materials. Then, the recent research progress in COF-derived catalysts for specific electrocatalytic reactions is introduced systematically. Finally, the outlook and challenges of future applications of COFs in electrocatalysis are highlighted.
  • 加载中
    1. [1]

      Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. Energy-Chem. 2021, 3, 100046.  doi: 10.1016/j.enchem.2020.100046

    2. [2]

      Guo, H.; Si, D. H.; Zhu, H. J.; Li, Q. X.; Huang, Y. B.; Cao, R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2022, 2, 295-303.  doi: 10.1016/j.esci.2022.03.007

    3. [3]

      Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102-109.  doi: 10.1016/j.esci.2021.12.007

    4. [4]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017, 355, 6321.

    5. [5]

      Li, N.; Si, D. H.; Wu, Q. J.; Wu, Q.; Huang, Y. B.; Cao, R. Boosting electrocatalytic CO2 reduction with conjugated bimetallic Co/Zn polyphthalocyanine frameworks. CCS Chem. 2022, DOI: 10.31635/ccschem.022.202201943.  doi: 10.31635/ccschem.022.202201943

    6. [6]

      McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347-4357.  doi: 10.1021/ja510442p

    7. [7]

      Liu, M.; Wei, C.; Zhuzhang, H.; Zhou, J.; Pan, Z.; Lin, W.; Yu, Z.; Zhang, G.; Wang, X. Fully condensed poly(triazine imide) crystals: extended pi-conjugation and structural defects for overall water splitting. Angew. Chem. Int. Ed. 2022, 61, e202113389.

    8. [8]

      Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; Wang, C.; Zhang, X.; Miller, J. T.; Sun, L.; Hou, J. Engineering single-atomic ruthenium catalytic sites on defective nickeliron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.  doi: 10.1038/s41467-021-24828-9

    9. [9]

      Oh, N. K.; Seo, J.; Lee, S.; Kim, H. J.; Kim, U.; Lee, J.; Han, Y. K.; Park, H. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 2021, 12, 4606.  doi: 10.1038/s41467-021-24829-8

    10. [10]

      Dai, L.; Chen, Z. N.; Li, L.; Yin, P.; Liu, Z.; Zhang, H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv. Mater. 2020, 32, 1906915.  doi: 10.1002/adma.201906915

    11. [11]

      Yu, Y.; Zhou, J.; Sun, Z. Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 2020, 30, 2000570.  doi: 10.1002/adfm.202000570

    12. [12]

      Kim, S.; Koratkar, N.; Karabacak, T.; Lu, T. -M. Water electrolysis activated by Ru nanorod array electrodes. Appl. Phys. Lett. 2006, 88, 263106.  doi: 10.1063/1.2218042

    13. [13]

      Wang, T.; Cao, X; Jiao, L. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience. 2021, 1, 69-74.  doi: 10.1016/j.esci.2021.09.002

    14. [14]

      Zhang, Q.; Wang, Y.; Wang, Y.; Yang, S.; Wu, X.; Lv, B.; Wang, N.; Gao, Y.; Xu, X.; Lei, H.; Cao, R. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 3807-3810.  doi: 10.1016/j.cclet.2021.04.048

    15. [15]

      Wang, W.; Wang, Z.; Hu, Y.; Liu, Y.; Chen, S. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience. 2022, Doi: doi.org/10.1016/j.esci.2022.04.004.  doi: 10.1016/j.esci.2022.04.004

    16. [16]

      Guo, X.; Wan, X.; Liu, Q.; Liu, Y.; Li, W.; Shui, J. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience. 2022, doi. org/10.1016/j. esci. 2022.04.002.  doi: 10.1016/j.esci.2022.04.002

    17. [17]

      Long, X.; Meng, J.; Gu, J.; Ling, L.; Li, Q.; Liu, N.; Wang, K.; Li, Z. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2204046-2204053.

    18. [18]

      He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metalorganic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2022, 9, nwab157.  doi: 10.1093/nsr/nwab157

    19. [19]

      Niu, J.; Shao, R.; Liu, M.; Zan, Y.; Dou, M.; Liu, J.; Zhang, Z.; Huang, Y.; Wang, F. Porous carbons derived from collagen-enriched biomass: tailored design, synthesis, and application in electrochemical energy storage and conversion. Adv. Funct. Mater. 2019, 29, 1905095.  doi: 10.1002/adfm.201905095

    20. [20]

      Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 2020, 120, 8814-8933.  doi: 10.1021/acs.chemrev.9b00550

    21. [21]

      Xu, S.; Zhang, Q. Recent progress in covalent organic frameworks as light-emitting materials. Mater. Today Energy 2021, 20, 100635.  doi: 10.1016/j.mtener.2020.100635

    22. [22]

      Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-1170.  doi: 10.1126/science.1120411

    23. [23]

      Wang, P. L.; Ding, S. Y.; Zhang, Z. C.; Wang, Z. P.; Wang, W. Constructing robust covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc. 2019, 141, 18004-18008.  doi: 10.1021/jacs.9b10625

    24. [24]

      Huang, X.; Sun, C.; Feng, X. Crystallinity and stability of covalent organic frameworks. Sci. China Chem. 2020, 63, 1367-1390.  doi: 10.1007/s11426-020-9836-x

    25. [25]

      Tan, K. T.; Tao, S.; Huang, N.; Jiang, D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat. Commun. 2021, 12, 6747.  doi: 10.1038/s41467-021-27128-4

    26. [26]

      Li, D.; Li, C.; Zhang, L.; Li, H.; Zhu, L.; Yang, D.; Fang, Q.; Qiu, S.; Yao, X. Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 2020, 142, 8104-8108.  doi: 10.1021/jacs.0c02225

    27. [27]

      Zhao, X.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 2019, 141, 6623-6630.  doi: 10.1021/jacs.9b01226

    28. [28]

      Zhong, H.; Wang, M.; Ghorbani-Asl, M.; Zhang, J.; Ly, K. H.; Liao, Z.; Chen, G.; Wei, Y.; Biswal, B. P.; Zschech, E.; Weidinger, I. M.; Krasheninnikov, A. V.; Dong, R.; Feng, X. Boosting the electrocatalytic conversion of nitrogen to ammonia on metal-phthalocyanine-based two-dimensional conjugated covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 19992-20000.  doi: 10.1021/jacs.1c11158

    29. [29]

      Kamai, R.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Oxygentolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 2016, 55, 13184-13188.  doi: 10.1002/anie.201607741

    30. [30]

      Bhunia, S.; Das, S. K.; Jana, R.; Peter, S. C.; Bhattacharya, S.; Addicoat, M.; Bhaumik, A.; Pradhan, A. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl. Mater. Interfaces 2017, 9, 23843-23851.  doi: 10.1021/acsami.7b06968

    31. [31]

      Lin, C. Y.; Zhang, D. T.; Zhao, Z. H.; Xia, Z. H. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 2018, 30, 1801726.  doi: 10.1002/adma.201801726

    32. [32]

      Bleier, G. C.; Watt, J.; Simocko, C. K.; Lavin, J. M.; Huber, D. L. Reversible magnetic agglomeration: a mechanism for thermodynamic control over nanoparticle size. Angew. Chem. Int. Ed. 2018, 57, 7678-7681.  doi: 10.1002/anie.201800959

    33. [33]

      Lee, H.; Nedrygailov, II; Lee, C.; Somorjai, G. A.; Park, J. Y. Chemical-reaction-induced hot electron flows on platinum colloid nanoparticles under hydrogen oxidation: impact of nanoparticle size. Angew. Chem. Int. Ed. 2015, 54, 2340-2344.  doi: 10.1002/anie.201410951

    34. [34]

      Fox, E. K.; El Haddassi, F.; Hierrezuelo, J.; Ninjbadgar, T.; Stolarczyk, J. K.; Merlin, J.; Brougham, D. F. Size-controlled nanoparticle clusters of narrow size-polydispersity formed using multiple particle types through competitive stabilizer desorption to a liquid-liquid Interface. Small 2018, 14, 1802278.  doi: 10.1002/smll.201802278

    35. [35]

      Yang, H.; Liu, Y.; Liu, X.; Wang, X.; Tian, H.; Waterhouse, G. I. N.; Kruger, P. E.; Telfer, S. G.; Ma, S. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2022, 2, 227-234.  doi: 10.1016/j.esci.2022.02.005

    36. [36]

      Cao, Y.; Peng, W.; Li, Y.; Zhang, F.; Zhu, Y.; Fan, X. Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion. Green Energy & Environment. 2021. doi. org/10.1016/j. gee. 2021.11.005.  doi: 10.1016/j.gee.2021.11.005

    37. [37]

      Gunasekar, G. H.; Park, K.; Ganesan, V.; Lee, K.; Kim, N. -K.; Jung, K. -D.; Yoon, S. A covalent triazine framework, functionalized with Ir/Nheterocyclic carbene sites, for the efficient hydrogenation of CO2 to formate. Chem. Mater. 2017, 29, 6740-6748.  doi: 10.1021/acs.chemmater.7b01539

    38. [38]

      Hosokawa, T.; Tsuji, M.; Tsuchida, K.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. J. Mater. Chem. A 2021, 9, 11073-11080.  doi: 10.1039/D1TA00396H

    39. [39]

      Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208-1213.  doi: 10.1126/science.aac8343

    40. [40]

      Yusran, Y.; Li, H.; Guan, X.; Li, D.; Tang, L.; Xue, M.; Zhuang, Z.; Yan, Y.; Valtchev, V.; Qiu, S.; Fang, Q. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, 1907289.  doi: 10.1002/adma.201907289

    41. [41]

      Ruidas, S.; Mohanty, B.; Bhanja, P.; Erakulan, E. S.; Thapa, R.; Das, P.; Chowdhury, A.; Mandal, S. K.; Jena, B. K.; Bhaumik, A. Metalfree triazine-based 2D covalent organic framework for efficient H2 evolution by electrochemical water splitting. Chemsuschem. 2021, 14, 5057-5064.  doi: 10.1002/cssc.202101663

    42. [42]

      Jin, E.; Fu, S.; Hanayama, H.; Addicoat, M. A.; Wei, W.; Chen, Q.; Graf, R.; Landfester, K.; Bonn, M.; Zhang, K. A. I.; Wang, H. I.; Mullen, K.; Narita, A. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. 2022, 61, e202114059.

    43. [43]

      Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. Chem. Commun. 2014, 50, 4788-4790.  doi: 10.1039/C4CC01002G

    44. [44]

      Guo, J.; Lin, C. Y.; Xia, Z.; Xiang, Z. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem. Int. Ed. 2018, 57, 12567-12572.  doi: 10.1002/anie.201808226

    45. [45]

      Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. Carbon nanotubetemplated synthesis of covalent porphyrin network for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 6348-6354.  doi: 10.1021/ja500984k

    46. [46]

      Li, C.; Xi, Z.; Guo, D.; Chen, X.; Yin, L. Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 2018, 14, 1701986.  doi: 10.1002/smll.201701986

    47. [47]

      Liu, M.; Xu, Q.; Miao, Q.; Yang, S.; Wu, P.; Liu, G.; He, J.; Yu, C.; Zeng, G. Atomic Co-N4 and Co nanoparticles confined in COF@ZIF-67 derived core-shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. J. Mater. Chem. A 2022, 10, 228-233.  doi: 10.1039/D1TA08325B

    48. [48]

      Guo, C.; Duan, F.; Zhang, S.; He, L.; Wang, M.; Chen, J.; Zhang, J.; Jia, Q.; Zhang, Z.; Du, M. Heterostructured hybrids of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). J. Mater. Chem. A 2022, 10, 475-507.  doi: 10.1039/D1TA06006F

    49. [49]

      Zhao, W.; Jin, B.; Wang, L.; Ding, C.; Jiang, M.; Chen, T.; Bi, S.; Liu, S.; Zhao, Q. Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chin. Chem. Lett. 2022, 33, 557-561.  doi: 10.1016/j.cclet.2021.07.035

    50. [50]

      Li, D.; Park, E. J.; Zhu, W.; Shi, Q.; Zhou, Y.; Tian, H.; Lin, Y.; Serov, A.; Zulevi, B.; Baca, E. D.; Fujimoto, C.; Chung, H. T.; Kim, Y. S. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 2020, 5, 378-385.  doi: 10.1038/s41560-020-0577-x

    51. [51]

      Wang, L.; Bellini, M.; Miller, H. A.; Varcoe, J. R. A high conductivity ultrathin anion-exchange membrane with 500+ h alkali stability for use in alkaline membrane fuel cells that can achieve 2 W cm-2 at 80 ℃. J. Mater. Chem. A 2018, 6, 15404-15412.  doi: 10.1039/C8TA04783A

    52. [52]

      Yang, F.; Han, P.; Yao, N.; Cheng, G.; Chen, S.; Luo, W. Interregulated d-band centers of the Ni3B/Ni heterostructure for boosting hydrogen electrooxidation in alkaline media. Chem. Sci. 2020, 11, 12118-12123.  doi: 10.1039/D0SC03917A

    53. [53]

      Sun, H.; Tian, C.; Fan, G.; Qi, J.; Liu, Z.; Yan, Z.; Cheng, F.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.  doi: 10.1002/adfm.201910596

    54. [54]

      Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 2015, 54, 52-65.  doi: 10.1002/anie.201407031

    55. [55]

      Patra, B. C.; Khilari, S.; Manna, R. N.; Mondal, S.; Pradhan, D.; Pradhan, A.; Bhaumik, A. A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 2017, 7, 6120-6127.  doi: 10.1021/acscatal.7b01067

    56. [56]

      Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 2016, 7, 4176-4181.  doi: 10.1039/C6PY00561F

    57. [57]

      Zhao, Y. X.; Liang, Y.; Wu, D. X.; Tian, H.; Xia, T.; Wang, W. X.; Xie, W. Y.; Hu, X. M.; Tian, X. L.; Chen, Q. Ruthenium complex of sp2 carbonconjugated covalent organic frameworks as an efficient electrocatalyst for hydrogen evolution. Small 2022, 18, 2107750.  doi: 10.1002/smll.202107750

    58. [58]

      Durst, J.; Siebel, A.; Simon, C.; Hasche, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255-2260.  doi: 10.1039/C4EE00440J

    59. [59]

      Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300-306.

    60. [60]

      Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M.; Shao, M. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711-718.

    61. [61]

      Jia, H.; Yao, Y.; Gao, Y.; Lu, D.; Du, P. Pyrolyzed cobalt porphyrinbased conjugated mesoporous polymers as bifunctional catalysts for hydrogen production and oxygen evolution in water. Chem. Commun. 2016, 52, 13483-13486.

    62. [62]

      Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. 2019, 58, 1376-1381.

    63. [63]

      Maiti, S.; Chowdhury, A. R.; Das, A. K. Electrochemically facile hydrogen evolution using ruthenium encapsulated two dimensional covalent organic framework (2D COF). ChemNanoMat. 2019, 6, 99-106.

    64. [64]

      Kong, F.; Fan, X.; Kong, A.; Zhou, Z.; Zhang, X.; Shan, Y. Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-Co doped carbons as highly efficient trifunctional electrocatalysts. Adv. Funct. Mater. 2018, 28, 1803973.

    65. [65]

      Ranjeesh, K. C.; Illathvalappil, R.; Wakchaure, V. C.; Goudappagouda; Kurungot, S.; Babu, S. S. Metalloporphyrin two-dimensional polymers via metal-catalyst-free C-C bond formation for efficient catalytic hydrogen evolution. ACS Appl. Energy Mater. 2018, 1, 6442-6450.

    66. [66]

      Yang, C.; Tao, S. S.; Huang, N.; Zhang, X. B.; Duan, J.; Makiura, R.; Maenosono, S. Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 5481-5488.

    67. [67]

      Rao, P.; Wu, D.; Wang, T. -J.; Li, J.; Deng, P.; Chen, Q.; Shen, Y.; Chen, Y.; Tian, X. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, doi. org/10.1016/j. esci. 2022.05.004.  doi: 10.1016/j.esci.2022.05.004

    68. [68]

      Han, L.; Dong, S.; Wang, E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266-9291.

    69. [69]

      Fu, C. L.; Wang, Y.; Huang, J. H. Hybrid of quaternary layered double hydroxides and carbon nanotubes for oxygen evolution reaction. Chin. J. Struct. Chem. 2020, 39, 1807-1816.

    70. [70]

      Mou, Q.; Wang, X.; Xu, Z.; Zul, P.; Li, E.; Zhao, P.; Liu, X.; Li, H.; Cheng, G. A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation. Chin. Chem. Lett. 2022, 33, 562-566.

    71. [71]

      Deng, B.; Liang, J.; Yue, L.; Li, T.; Liu, Q.; Liu, Y.; Gao, S.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y.; Sun, X. CoFe-LDH nanowire arrays on graphite felt: a high-performance oxygen evolution electrocatalyst in alkaline media. Chin. Chem. Lett. 2022, 33, 890-892.

    72. [72]

      Chen, K.; Mao, K.; Bai, Y.; Duan, D.; Chen, S.; Wang, C.; Zhang, N.; Long, R.; Wu, X.; Song, L.; Xiong, Y. Phosphate-induced interfacial electronic engineering in VPO4-Ni2P heterostructure for improved electrochemical water oxidation. Chin. Chem. Lett. 2022, 33, 452-456.

    73. [73]

      Lu, X. F.; Liao, P. Q.; Wang, J. W.; Wu, J. X.; Chen, X. W.; He, C. T.; Zhang, J. P.; Li, G. R.; Chen, X. M. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 8336-8339.

    74. [74]

      Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623-5630.

    75. [75]

      Yang, C.; Yang, Z. -D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. -M.; Zhang, G. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251-2258.

    76. [76]

      Riha, S. C.; Klahr, B. M.; Tyo, E. C.; Seifert, S.; Vajda, S.; Pellin, M. J.; Hamann, T. W.; Martinson, A. B. F. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 2013, 7, 2396-2405.

    77. [77]

      Jia, H.; Sun, Z.; Jiang, D.; Du, P. Covalent cobalt porphyrin framework on multi-walled carbon nanotubes for efficient water oxidation at low overpotential. Chem. Mater. 2015, 27, 4586-4593.

    78. [78]

      Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 2016, 28, 4375-4379.

    79. [79]

      Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Low-overpotential electrocatalytic water splitting with noble-metal-free nanoparticles supported in a sp3 N-rich flexible COF. Adv. Energy Mater. 2016, 6, 1600110.

    80. [80]

      Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst. Adv. Energy Mater. 2016, 6, 1601189.

    81. [81]

      Fan, X.; Kong, F.; Kong, A.; Chen, A.; Zhou, Z.; Shan, Y. Covalent porphyrin framework-derived Fe2P@Fe4N-coupled nanoparticles embedded in N-doped carbons as efficient trifunctional electrocatalysts. ACS Appl. Mater. Interfaces 2017, 9, 32840-32850.

    82. [82]

      Singh, A.; Roy, S.; Das, C.; Samanta, D.; Maji, T. K. Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis. Chem. Commun. 2018, 54, 4465-4468.

    83. [83]

      Zhuang, G. -l.; Gao, Y. -F.; Zhou, X.; Tao, X. -Y.; Luo, J. -M.; Gao, Y. -J.; Yan, Y. -l.; Gao, P. -Y.; Zhong, X.; Wang, J. -G. ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem. Eng. J. 2017, 330, 1255-1264.

    84. [84]

      Yang, W. G.; Gong, Z. W.; Chen, Y. N.; Chen, R. R.; Meng, D. L.; Cao, M. N. Nitrogen doped carbon as efficient catalyst toward oxygen reduction reaction. Chin. J. Struct. Chem. 2020, 39, 287-293.

    85. [85]

      Cui, Y. Q.; Xu, J. X.; Wang, M. L.; Guan, L. H. Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity. Chin. J. Struct. Chem. 2021, 40, 533-539.

    86. [86]

      Wang, K.; Pang, Y. Y.; Xie, H.; Sun, Y.; Chai, G. L. Synergistic effect of Ta2O5/F-C composites for effective electrosynthesis of hydrogen peroxide from O2 reduction. Chin. J. Struct. Chem. 2021, 40, 225-232.

    87. [87]

      Song, Y.; Peng, Y.; Yao, S.; Zhang, P.; Wang, Y.; Gu, J.; Lu, T.; Zhang, Z. Co-POM@MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. Chin. Chem. Lett. 2022, 33, 1047-1050.

    88. [88]

      Royuela, S.; Martinez-Perinan, E.; Arrieta, M. P.; Martinez, J. I.; Ramos, M. M.; Zamora, F.; Lorenzo, E.; Segura, J. L. Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chem. Commun. 2020, 56, 1267-1270.

    89. [89]

      Xiang, Z.; Cao, D.; Huang, L.; Shui, J.; Wang, M.; Dai, L. Nitrogendoped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction. Adv. Mater. 2014, 26, 3315-3320.

    90. [90]

      Zuo, Q.; Cheng, G.; Luo, W. A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction. Dalton Trans. 2017, 46, 9344-9348.

    91. [91]

      Xu, Q.; Tang, Y.; Zhang, X.; Oshima, Y.; Chen, Q.; Jiang, D. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 2018, 30, 1706330.

    92. [92]

      Liu, W.; Wang, C.; Zhang, L.; Pan, H.; Liu, W.; Chen, J.; Yang, D.; Xiang, Y.; Wang, K.; Jiang, J.; Yao, X. Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. J. Mater. Chem. A 2019, 7, 3112-3119.

    93. [93]

      Chai, D.; Min, X.; Harada, T.; Nakanishi, S.; Zhang, X. Covalent triazine framework anchored with atomically dispersed iron as an efficient catalyst for advanced oxygen reduction. Colloids Surf. A 2021, 628, 127240.

    94. [94]

      Wang, Y.; Batmunkh, M.; Mao, H.; Li, H.; Jia, B.; Wu, S.; Liu, D.; Song, X.; Sun, Y.; Ma, T. Low-overpotential electrochemical ammonia synthesis using BiOCl-modified 2D titanium carbide MXene. Chin. Chem. Lett. 2022, 33, 394-398.

    95. [95]

      Li, S.; Liang, J.; Wei, P.; Liu, Q.; Xie, L.; Luo, Y.; Sun, X. ITO@TiO2 nanoarray: an efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, doi. org/10.1016/j. esci. 2022.04.008.  doi: 10.1016/j.esci.2022.04.008

    96. [96]

      Hong, Q. S.; Li, T. Y.; Zheng, S. S.; Chen, H. B.; Chu, H. H.; Xu, K. D.; Li, S. N.; Mei, Z. W.; Zhao, Q. H.; Ren, W. J.; Zhao, W. G.; Pan, P. Tuning double layer structure of WO3 nanobelt for promoting the electrochemical nitrogen reduction reaction in water. Chin. J. Struct. Chem. 2021, 40, 519-526.

    97. [97]

      Liu, S.; Wang, M.; Qian, T.; Ji, H.; Liu, J.; Yan, C. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.

    98. [98]

      Jiang, M.; Han, L.; Peng, P.; Hu, Y.; Xiong, Y.; Mi, C.; Tie, Z.; Xiang, Z.; Jin, Z. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis. Nano Lett. 2022, 22, 372-379.

    99. [99]

      Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.

    100. [100]

      Wu, Q.; Xie, R. K.; Mao, M. J.; Chai, G. L.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 2020, 5, 1005-1012.

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    3. [3]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    4. [4]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    8. [8]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    9. [9]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    10. [10]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    11. [11]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    14. [14]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    15. [15]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    16. [16]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    17. [17]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    18. [18]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    19. [19]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    20. [20]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

Metrics
  • PDF Downloads(27)
  • Abstract views(605)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return