The Structural and Chemical Reactivity of Lattice Oxygens on β-PbO2 EOP Electrocatalysts
- Corresponding author: Shibin Wang, wangshibin@zjut.edu.cn
Citation:
Wenwen Li, Ge Feng, Jia Liu, Xing Zhong, Zihao Yao, Shengwei Deng, Shibin Wang, Jianguo Wang. The Structural and Chemical Reactivity of Lattice Oxygens on β-PbO2 EOP Electrocatalysts[J]. Chinese Journal of Structural Chemistry,
;2022, 41(12): 221205.
doi:
10.14102/j.cnki.0254-5861.2022-0153
Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal., B: Environ. 2003, 46, 639-669.
doi: 10.1016/S0926-3373(03)00326-6
Cremer, D.; Crehuet, R.; Anglada, J. The ozonolysis of acetylenea quantum chemical investigation. J. Am. Chem. Soc. 2001, 123, 6127-6141.
doi: 10.1021/ja010166f
Criegee, R. Mechanism of ozonolysis. Angew. Chem. Int. Ed. 1975, 14, 745-752.
doi: 10.1002/anie.197507451
Smith, G. D.; Woods, E.; DeForest, C. L.; Baer, T.; Miller, R. E. Reactive uptake of ozone by oleic acid aerosol particles: application of single-particle mass spectrometry to heterogeneous reaction kinetics. J. Phys. Chem. A 2002, 106, 8085-8095.
doi: 10.1021/jp020527t
Khadre, M. A.; Yousef, A. E.; Kim, J. G. Microbiological aspects of ozone applications in food: a review. J. Food Sci. 2001, 66, 1242-1252.
doi: 10.1111/j.1365-2621.2001.tb15196.x
Christensen, P. A.; Yonar, T.; Zakaria, K. The electrochemical generation of ozone: a review. Ozone: Sci. Eng. 2013, 35, 149-167.
doi: 10.1080/01919512.2013.761564
Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399-404.
doi: 10.1021/jz2016507
Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765-1772.
doi: 10.1021/cs3003098
Seitz Linsey, C.; Dickens Colin, F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang Harold, Y.; Norskov Jens, K.; Jaramillo Thomas, F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011-1014.
doi: 10.1126/science.aaf5050
Yang, L.; Yu, G.; Ai, X.; Yan, W.; Duan, H.; Chen, W.; Li, X.; Wang, T.; Zhang, C.; Huang, X.; Chen, J. S.; Zou, X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.
doi: 10.1038/s41467-018-07678-w
Zhang, C.; Xu, Y.; Lu, P.; Zhang, X.; Xu, F.; Shi, J. Capillary effectenabled water electrolysis for enhanced electrochemical ozone production by using bulk porous electrode. J. Am. Chem. Soc. 2017, 139, 16620-16629.
doi: 10.1021/jacs.7b07705
Awad, M. I.; Saleh, M. M.; Ohsaka, T. Ozone electrogeneration on Pt-loaded reticulated vitreous carbon using flooded and flow-through assembly. J. Electrochem. Soc. 2006, 153, D207-D212.
doi: 10.1149/1.2358837
Da Silva, L. M.; De Faria, L. A.; Boodts, J. F. C. Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochim. Acta 2003, 48, 699-709.
doi: 10.1016/S0013-4686(02)00739-9
Cheng, S. -A.; Chan, K. -Y. Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode. Electrochem. Solid-State Lett. 2004, 7, D4-D6.
doi: 10.1149/1.1645753
Shekarchizade, H.; Amini, M. K. Effect of elemental composition on the structure, electrochemical properties, and ozone production activity of Ti/SnO2-Sb-Ni electrodes prepared by thermal pyrolysis method. Int. J. Electrochem. 2011, 2011, 17580-17590.
Arihara, K.; Terashima, C.; Fujishima, A. Application of freestanding perforated diamond electrodes for efficient ozone-water production. Electrochem. Solid-State Lett. 2006, 9, D17-D20.
doi: 10.1149/1.2206009
Kraft, A.; Stadelmann, M.; Wünsche, M.; Blaschke, M. Electrochemical ozone production using diamond anodes and a solid polymer electrolyte. Electrochem. Commun. 2006, 8, 883-886.
doi: 10.1016/j.elecom.2006.02.013
Fu, H. -C.; Varadhan, P.; Tsai, M. -L.; Li, W.; Ding, Q.; Lin, C. -H.; Bonifazi, M.; Fratalocchi, A.; Jin, S.; He, J. -H. Improved performance and stability of photoelectrochemical water-splitting Si system using a bifacial design to decouple light harvesting and electrocatalysis. Nano Energy 2020, 70, 104478.
doi: 10.1016/j.nanoen.2020.104478
Lin, S.; Huang, H.; Ma, T.; Zhang, Y. Photocatalytic oxygen evolution from water splitting. Adv. Sci. 2021, 8, 2002458.
doi: 10.1002/advs.202002458
Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García de Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z.; Zheng, X.; Zhang, L.; Wen, Y.; Voznyy, O.; Comin, R.; De Luna, P.; Regier, T.; Bi, W.; Alp, E. E.; Pao, C. -W.; Zheng, L.; Hu, Y.; Ji, Y.; Li, Y.; Zhang, Y.; Cavallo, L.; Peng, H.; Sargent, E. H. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985-992.
doi: 10.1038/s41929-020-00525-6
Devilliers, D.; Dinh Thi, M. T.; Mahé, E.; Le Xuan, Q. Cr(Ⅲ) oxidation with lead dioxide-based anodes. Electrochim. Acta 2003, 48, 4301-4309.
doi: 10.1016/j.electacta.2003.07.005
Jiang, W.; Wang, S.; Liu, J.; Zheng, H.; Gu, Y.; Li, W.; Shi, H.; Li, S.; Zhong, X.; Wang, J. Lattice oxygen of PbO2 induces crystal facet dependent electrochemical ozone production. J. Mater. Chem. A 2021, 9, 9010-9017.
doi: 10.1039/D0TA12277G
Jahangiri, S.; Mosey, N. J. Computational investigation of the oxygen evolution reaction catalyzed by nickel (oxy)hydroxide complexes. J. Phys. Chem. C 2018, 122, 25785-25795.
doi: 10.1021/acs.jpcc.8b06614
Liu, T.; Feng, Z.; Li, Q.; Yang, J.; Li, C.; Dupuis, M. Role of oxygen vacancies on oxygen evolution reaction activity: β-Ga2O3 as a case study. Chem. Mater. 2018, 30, 7714-7726.
doi: 10.1021/acs.chemmater.8b03015
Man, I. C.; Su, H. -Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 2011, 3, 1159-1165.
doi: 10.1002/cctc.201000397
Murdachaew, G.; Laasonen, K. Oxygen evolution reaction on nitrogen-doped defective carbon nanotubes and graphene. J. Phys. Chem. C 2018, 122, 25882-25892.
doi: 10.1021/acs.jpcc.8b08519
Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178-184.
doi: 10.1016/j.chemphys.2005.05.038
Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872-9879.
doi: 10.1021/jp711929d
Wei, R.; Bu, X.; Gao, W.; Villaos, R. A. B.; Macam, G.; Huang, Z. -Q.; Lan, C.; Chuang, F. -C.; Qu, Y.; Ho, J. C. Engineering surface structure of spinel oxides via high-valent vanadium doping for remarkably enhanced electrocatalytic oxygen evolution reaction. ACS Appl. Mater. Int. 2019, 11, 33012-33021.
doi: 10.1021/acsami.9b10868
Grimaud, A.; Hong, W. T.; Shao-Horn, Y.; Tarascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 2016, 15, 121-126.
doi: 10.1038/nmat4551
Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.
doi: 10.1038/ncomms11053
Suntivich, J.; May Kevin, J.; Gasteiger Hubert, A.; Goodenough John, B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.
doi: 10.1126/science.1212858
Li, W.; Feng, G.; Wang, S.; Liu, J.; Zhong, X.; Yao, Z.; Deng, S.; Wang, J. Lattice oxygen of PbO2 (101) consuming and refilling via electrochemical ozone production and H2O dissociation. J. Phys. Chem. C 2022, 126, 8627-8636.
doi: 10.1021/acs.jpcc.2c00725
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
doi: 10.1016/0927-0256(96)00008-0
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
doi: 10.1103/PhysRevB.54.11169
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
doi: 10.1103/PhysRevLett.77.3865
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
doi: 10.1103/PhysRevB.50.17953
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978-9985.
doi: 10.1063/1.1323224
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
doi: 10.1063/1.1329672
Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010-7022.
doi: 10.1063/1.480097
Heyden, A.; Bell, A. T.; Keil, F. J. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005, 123, 224101.
doi: 10.1063/1.2104507
Kästner, J.; Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 2008, 128, 014106.
doi: 10.1063/1.2815812
Xiao, P.; Sheppard, D.; Rogal, J.; Henkelman, G. Solid-state dimer method for calculating solid-solid phase transitions. J. Chem. Phys. 2014, 140, 174104.
doi: 10.1063/1.4873437
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695-1697.
doi: 10.1103/PhysRevA.31.1695
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.
doi: 10.1063/1.447334
Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338-7364.
doi: 10.1021/jp980939v
Chevrier, V. L.; Ong, S. P.; Armiento, R.; Chan, M. K. Y.; Ceder, G. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 2010, 82, 075122.
doi: 10.1103/PhysRevB.82.075122
Giannozzi, P.; Car, R.; Scoles, G. Oxygen adsorption on graphite and nanotubes. J. Chem. Phys. 2003, 118, 1003-1006.
doi: 10.1063/1.1536636
Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413-7421.
doi: 10.1103/PhysRevB.59.7413
Mutter, D.; Urban, D. F.; Elsässer, C. Determination of formation energies and phase diagrams of transition metal oxides with DFT+U. Materials 2020, 13, 4303.
doi: 10.3390/ma13194303
Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. Gaussian-1 theory: a general procedure for prediction of molecular energies. J. Chem. Phys. 1989, 90, 5622-5629.
doi: 10.1063/1.456415
Sai Gautam, G.; Carter, E. A. Evaluating transition metal oxides within DFT-SCAN and SCAN+U frameworks for solar thermochemical applications. Phys. Rev. Mater. 2018, 2, 095401.
doi: 10.1103/PhysRevMaterials.2.095401
Yoo, J. S.; Rong, X.; Liu, Y.; Kolpak, A. M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS. Catal. 2018, 8, 4628-4636.
doi: 10.1021/acscatal.8b00612
Gibson, G.; Morgan, A.; Hu, P.; Lin, W. -F. New insights into electrocatalytic ozone generation via splitting of water over PbO2 electrode: a DFT study. Chem. Phys. Lett. 2016, 654, 46-51.
doi: 10.1016/j.cplett.2016.04.078
Gu, Y.; Wang, S.; Shi, H.; Yang, J.; Li, S.; Zheng, H.; Jiang, W.; Liu, J.; Zhong, X.; Wang, J. Atomic Pt embedded in BNC nanotubes for enhanced electrochemical ozone production via an oxygen intermediate-rich local environment. ACS Catal. 2021, 11, 5438-5451.
doi: 10.1021/acscatal.1c00413
Cao, H.; Zhang, Z.; Chen, J. -W.; Wang, Y. -G. Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 2022, 12, 6606-6617.
doi: 10.1021/acscatal.2c01470
Xia, G. J.; Wang, Y. G. Dynamic simulation on surface hydration and dehydration of monoclinic zirconia. Chin. J. Chem. Phys. 2022, 35, 629-638.
doi: 10.1063/1674-0068/cjcp2204062
Lei LIU , Xiao Song LI , Qing Xiang GUO , You Cheng LIU . Hartree-Fock and Density Functional Theory Studies on the Molecular Recognition of the Cyclodextrin. Chinese Chemical Letters, 1999, 10(12): 1053-1056.
GÜL Vedat , IŞIN Dilara Özbakir . Computational Investigation of the Substituent Effect on the Intramolecular Proton Transfer Reaction of 3-Hydroxytropolone. Chinese Journal of Structural Chemistry, 2014, 33(12): 1757-1767. doi: 10.14102/j.cnki.0254-5861.2010-1628
FENG Chang-Jun , YANG Wei-Hua . Linear QSAR Regression Models for the Prediction of Bioconcentration Factors of Chloroanilines in Fish by Density Functional Theory. Chinese Journal of Structural Chemistry, 2014, 33(6): 830-834.
Hong Yu ZHANG , You Min SUN , De Zhan CHEN . 1,4-Pyrone Effects on O-H Bond Dissociation Energies of Catechols in Flavonoids: A Density Functional Theory Study. Chinese Chemical Letters, 2002, 13(6): 531-534.
GE Hong-Yu , WANG Guo . Electronic Properties of Armchair Graphene Nanoribbons with Oxygenterminated Edges: A Density Functional Study. Chinese Journal of Structural Chemistry, 2015, 34(5): 641-649. doi: 10.14102/j.cnki.0254-5861.2011-0611
Ai Ping FU , Dong Mei DU , Zheng Yu ZHOU . Electron Transfer Reaction between M-C6H6 and M+-C6H6 Complexes in the Gas Phase:Density Functional Theory Study. Chinese Chemical Letters, 2000, 11(3): 219-222.
HU Jian-Ming , WANG Da-Chuan , ZHAO Yong-Gang , LI Yi , ZHANG Yong-Fan . Theory Study of the Adsorption of Hydrocyanic Acid onto Small Silver Clusters. Chinese Journal of Structural Chemistry, 2014, 33(2): 228-236.
SONG Xiao-Hui , ZHANG Cai-Yun . Density Functional Study on the Geometries and Magnetic Properties of Bimetallic Clusters: AunM-(1≤n≤8; M=In, Tl). Chinese Journal of Structural Chemistry, 2015, 34(11): 1633-1640. doi: 10.14102/j.cnki.0254-5861.2011-0705
ZHANG Rui-Zhou , LI Xiao-Hong . Theoretical Investigations on the Structure, Density, Thermodynamic and Performance Properties of Bis(2,2-dinitropropyl) formal. Chinese Journal of Structural Chemistry, 2014, 33(1): 71-78.
LI Bu-Tong , CHI Wei-Jie , LI Lu-Lin . Theoretical Calculation about the High Energy Density Molecules of Nitrate Ester Substitution Derivatives of Prismane. Chinese Journal of Structural Chemistry, 2016, 35(8): 1306-1312. doi: 10.14102/j.cnki.0254-5861.2011-1186
HUANG Pan , SHI Xiao-Qi , FENG Xiao-Ning , LIU Jian-Zhi , LI Yi , ZHANG Yong-Fan . Adsorption of HCN on Ni/Pt(111) Bimetallic Surfaces Investigated with Density Functional Theory Method①. Chinese Journal of Structural Chemistry, 2016, 35(10): 1491-1500. doi: 10.14102/j.cnki.0254-5861.2011-1175
Zhao-Feng YANG , Zhen-Zhu CAO , U Rehman Aziz , Ju-Cai YANG . Structural and Electronic Properties of Lutetium Doped Germanium Clusters LuGen(+/0/-) (n = 6~19): A Density Functional Theory Investigation. Chinese Journal of Structural Chemistry, 2022, 41(3): 2203155-2203165. doi: 10.14102/j.cnki.0254-5861.2011-3305
LI Zhan-ku , WANG Hai-tao , YAN Hong-lei , YAN Jing-chong , LEI Zhi-ping , REN Shi-biao , WANG Zhi-cai , KANG Shi-gang , SHUI Heng-fu . Simulation of hydrogen bonds in low-rank coals with lignite-related complexes using dispersion corrected density functional theory. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1153-1159.
WANG Guo , ZHANG Xiao-Han , ZHAO Tian-Tian , GE Hong-Yu . Theoretical Investigation on Self-passivation in Bare Zigzag Phosphorene Nanoribbons. Chinese Journal of Structural Chemistry, 2016, 35(2): 185-192. doi: 10.14102/j.cnki.0254-5861.2011-0861
ZHANG Ya-Fei , ZHANG Hong . The First Principles Study of Li, Al and Ca Doped Zigzag (7,0) Single Walled Carbon Nanotube. Chinese Journal of Structural Chemistry, 2016, 35(5): 731-739. doi: 10.14102/j.cnki.0254-5861.2011-0918
LI Guo-Xia , YANG Xu , HAI Li-Si , CHAI Zhan-Li , WANG Xiao-Jing . Tuning of NaTaO3 Band Structure through Mn2+ Ion Doping and the Enhanced Visible Light Response. Chinese Journal of Structural Chemistry, 2014, 33(5): 771-778.
GONG Xue , WEI Hang , LUO Kai-Jun , LI Quan . UV-Vis Spectrum and the Third-order Nonlinear Optical Properties of the Chiral Camphor-derived β-diketonate Platinum Complexess. Chinese Journal of Structural Chemistry, 2014, 33(3): 422-428.
WANG Yan , GAO Hui , YANG Ping , NIE Guang-Hua , SONG Xin-Jian . Theoretical Study on the Electronic Structures and Spectral Properties of 1,8-Naphthalimide Derivatives. Chinese Journal of Structural Chemistry, 2014, 33(6): 813-820.
HAN Xiang-Yun , SHI Jia-Qi , CHEN Tian-Ming . 2D- and 3D-QSBR Studies on the Relationship between Structure and Biodegradability of Phthalates. Chinese Journal of Structural Chemistry, 2014, 33(8): 1109-1116.
YANG Li-Jun , LI Hong , YI Ling-Ya , ZHAO Wen-Hua . Absorption and Fluorescence Properties of Oxidized and N-doped Graphene Quantum Dots: A Time-dependent DFT Study. Chinese Journal of Structural Chemistry, 2015, 34(12): 1803-1812. doi: 10.14102/j.cnki.0254-5861.2011-0837