Citation: Wenwen Li, Ge Feng, Jia Liu, Xing Zhong, Zihao Yao, Shengwei Deng, Shibin Wang, Jianguo Wang. The Structural and Chemical Reactivity of Lattice Oxygens on β-PbO2 EOP Electrocatalysts[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221205. doi: 10.14102/j.cnki.0254-5861.2022-0153 shu

The Structural and Chemical Reactivity of Lattice Oxygens on β-PbO2 EOP Electrocatalysts









  • Author Bio: Wenwen Li is currently a PhD candidate in the College of Chemical Engineering at Zhejiang University of Technology, China. Her research interests are the processes of electrochemical ozone production based on DFT calculations
    Ge Feng is currently a PhD candidate in the College of Chemical Engineering at Zhejiang University of Technology, China. Her research focuses on electrochemical water splitting reaction based on real electrocatalytic conditions
    Jia Liu is a PhD candidate in the School of Chemical Engineering, Zhejiang University of Technology, China. She is passionate about electrochemical ozone generation (EOP) research under neutral conditions, with a particular focus on the development of advanced electrocatalysts for EOP and the promotion of their industrial application
    Xing Zhong is a professor of College of Chemical Engineering at Zhejiang University of Technology, China. In recent years, he is mainly engaged in the research of green industrial micro-reaction engineering, and has accumulated rich experience in the development and industrialization of PEM electrolytic ozone generator
    Zihao Yao is an instructor of College of Chemical Engineering at Zhejiang University of Technology, China. His research involves the quantitative determination of C-C coupling mechanisms and detailed analyses on the activity and selectivity for Fischer-Tropsch synthesis using microkinetic modeling with coverage effects
    Shengwei Deng is an associate professor of College of Chemical Engineering at Zhejiang University of Technology, China. He is mainly engaged in polymer synthesis, multiscale simulation of structure and interface properties of supported catalysts based on multi-scale simulation method
    Shibin Wang is a lecture of College of Chemical Engineering at Zhejiang University of Technology, China. He completed his PhD in 2018 at University of Chinese Academy of Sciences and worked as the postdoc fellowship during 2018~2020 in Tsinghua University, China. He is currently engaged in the theoretical calculation of photocatalysis and electrocatalysis
    Jianguo Wang is a professor and the head of College of Chemical Engineering at Zhejiang University of Technology, China. He completed his PhD in Chemical Technology in 2004 at Tianjin University, China. Prior to that, he received his Master of Chemical Engineering from Nanjing Tech University, China. He leads a research group focusing on design, preparation and application of nano-micro catalysts based on theory and experiment. In addition to authoring 100+ publications, he collaborated with numerous companies and is committed to industrializing his research results
  • Corresponding author: Shibin Wang, wangshibin@zjut.edu.cn
  • Received Date: 13 June 2022
    Accepted Date: 23 August 2022
    Available Online: 6 September 2022

Figures(5)

  • The oxygen evolution reaction (OER) and electrochemical ozone production (EOP) attracted considerable attention due to their wide applications in electrocatalysis, but the detailed reaction mechanism of product formation as well as the voltage effect on O2/O3 formation still remains unclear. In this work, density functional theory calculations were used to systematically investigate the possible reaction mechanisms of OER and EOP on the PbO2 (110) surface, with the possible reaction network involving surface lattice oxygen atoms (LOM) proposed. The results show that the LOM-2 reaction pathway involving two surface lattice oxygen atoms (Olatt) and one oxygen atom from H2O was the most thermodynamically reactive. Different potential determining step (PDS) was obtained depending on the multiple reaction pathway, and the results show that the facile diffusion of Olatt would proceed the LOM pathway and promote the formation of surface oxygen vacancies (Ovac1/Ovac2). Furthermore, Ovac1/Ovac2 formation on the surface would trigger further reactions of H2O adsorption and splitting, which refilled the oxygen vacancy and ensured the considerable stability of the PbO2 (110) surface. Multiple H2O dissociation pathways were proposed on PbO2 (110) with oxygen vacancy sites: the acid-base interaction mechanism and the vacancy fulfilling mechanism.
  • 加载中
    1. [1]

      Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal., B: Environ. 2003, 46, 639-669.  doi: 10.1016/S0926-3373(03)00326-6

    2. [2]

      Cremer, D.; Crehuet, R.; Anglada, J. The ozonolysis of acetylenea quantum chemical investigation. J. Am. Chem. Soc. 2001, 123, 6127-6141.  doi: 10.1021/ja010166f

    3. [3]

      Criegee, R. Mechanism of ozonolysis. Angew. Chem. Int. Ed. 1975, 14, 745-752.  doi: 10.1002/anie.197507451

    4. [4]

      Smith, G. D.; Woods, E.; DeForest, C. L.; Baer, T.; Miller, R. E. Reactive uptake of ozone by oleic acid aerosol particles: application of single-particle mass spectrometry to heterogeneous reaction kinetics. J. Phys. Chem. A 2002, 106, 8085-8095.  doi: 10.1021/jp020527t

    5. [5]

      Khadre, M. A.; Yousef, A. E.; Kim, J. G. Microbiological aspects of ozone applications in food: a review. J. Food Sci. 2001, 66, 1242-1252.  doi: 10.1111/j.1365-2621.2001.tb15196.x

    6. [6]

      Christensen, P. A.; Yonar, T.; Zakaria, K. The electrochemical generation of ozone: a review. Ozone: Sci. Eng. 2013, 35, 149-167.  doi: 10.1080/01919512.2013.761564

    7. [7]

      Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399-404.  doi: 10.1021/jz2016507

    8. [8]

      Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765-1772.  doi: 10.1021/cs3003098

    9. [9]

      Seitz Linsey, C.; Dickens Colin, F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang Harold, Y.; Norskov Jens, K.; Jaramillo Thomas, F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011-1014.  doi: 10.1126/science.aaf5050

    10. [10]

      Yang, L.; Yu, G.; Ai, X.; Yan, W.; Duan, H.; Chen, W.; Li, X.; Wang, T.; Zhang, C.; Huang, X.; Chen, J. S.; Zou, X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.  doi: 10.1038/s41467-018-07678-w

    11. [11]

      Zhang, C.; Xu, Y.; Lu, P.; Zhang, X.; Xu, F.; Shi, J. Capillary effectenabled water electrolysis for enhanced electrochemical ozone production by using bulk porous electrode. J. Am. Chem. Soc. 2017, 139, 16620-16629.  doi: 10.1021/jacs.7b07705

    12. [12]

      Awad, M. I.; Saleh, M. M.; Ohsaka, T. Ozone electrogeneration on Pt-loaded reticulated vitreous carbon using flooded and flow-through assembly. J. Electrochem. Soc. 2006, 153, D207-D212.  doi: 10.1149/1.2358837

    13. [13]

      Da Silva, L. M.; De Faria, L. A.; Boodts, J. F. C. Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochim. Acta 2003, 48, 699-709.  doi: 10.1016/S0013-4686(02)00739-9

    14. [14]

      Cheng, S. -A.; Chan, K. -Y. Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode. Electrochem. Solid-State Lett. 2004, 7, D4-D6.  doi: 10.1149/1.1645753

    15. [15]

      Shekarchizade, H.; Amini, M. K. Effect of elemental composition on the structure, electrochemical properties, and ozone production activity of Ti/SnO2-Sb-Ni electrodes prepared by thermal pyrolysis method. Int. J. Electrochem. 2011, 2011, 17580-17590.

    16. [16]

      Arihara, K.; Terashima, C.; Fujishima, A. Application of freestanding perforated diamond electrodes for efficient ozone-water production. Electrochem. Solid-State Lett. 2006, 9, D17-D20.  doi: 10.1149/1.2206009

    17. [17]

      Kraft, A.; Stadelmann, M.; Wünsche, M.; Blaschke, M. Electrochemical ozone production using diamond anodes and a solid polymer electrolyte. Electrochem. Commun. 2006, 8, 883-886.  doi: 10.1016/j.elecom.2006.02.013

    18. [18]

      Fu, H. -C.; Varadhan, P.; Tsai, M. -L.; Li, W.; Ding, Q.; Lin, C. -H.; Bonifazi, M.; Fratalocchi, A.; Jin, S.; He, J. -H. Improved performance and stability of photoelectrochemical water-splitting Si system using a bifacial design to decouple light harvesting and electrocatalysis. Nano Energy 2020, 70, 104478.  doi: 10.1016/j.nanoen.2020.104478

    19. [19]

      Lin, S.; Huang, H.; Ma, T.; Zhang, Y. Photocatalytic oxygen evolution from water splitting. Adv. Sci. 2021, 8, 2002458.  doi: 10.1002/advs.202002458

    20. [20]

      Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García de Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z.; Zheng, X.; Zhang, L.; Wen, Y.; Voznyy, O.; Comin, R.; De Luna, P.; Regier, T.; Bi, W.; Alp, E. E.; Pao, C. -W.; Zheng, L.; Hu, Y.; Ji, Y.; Li, Y.; Zhang, Y.; Cavallo, L.; Peng, H.; Sargent, E. H. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985-992.  doi: 10.1038/s41929-020-00525-6

    21. [21]

      Devilliers, D.; Dinh Thi, M. T.; Mahé, E.; Le Xuan, Q. Cr(Ⅲ) oxidation with lead dioxide-based anodes. Electrochim. Acta 2003, 48, 4301-4309.  doi: 10.1016/j.electacta.2003.07.005

    22. [22]

      Jiang, W.; Wang, S.; Liu, J.; Zheng, H.; Gu, Y.; Li, W.; Shi, H.; Li, S.; Zhong, X.; Wang, J. Lattice oxygen of PbO2 induces crystal facet dependent electrochemical ozone production. J. Mater. Chem. A 2021, 9, 9010-9017.  doi: 10.1039/D0TA12277G

    23. [23]

      Jahangiri, S.; Mosey, N. J. Computational investigation of the oxygen evolution reaction catalyzed by nickel (oxy)hydroxide complexes. J. Phys. Chem. C 2018, 122, 25785-25795.  doi: 10.1021/acs.jpcc.8b06614

    24. [24]

      Liu, T.; Feng, Z.; Li, Q.; Yang, J.; Li, C.; Dupuis, M. Role of oxygen vacancies on oxygen evolution reaction activity: β-Ga2O3 as a case study. Chem. Mater. 2018, 30, 7714-7726.  doi: 10.1021/acs.chemmater.8b03015

    25. [25]

      Man, I. C.; Su, H. -Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 2011, 3, 1159-1165.  doi: 10.1002/cctc.201000397

    26. [26]

      Murdachaew, G.; Laasonen, K. Oxygen evolution reaction on nitrogen-doped defective carbon nanotubes and graphene. J. Phys. Chem. C 2018, 122, 25882-25892.  doi: 10.1021/acs.jpcc.8b08519

    27. [27]

      Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178-184.  doi: 10.1016/j.chemphys.2005.05.038

    28. [28]

      Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872-9879.  doi: 10.1021/jp711929d

    29. [29]

      Wei, R.; Bu, X.; Gao, W.; Villaos, R. A. B.; Macam, G.; Huang, Z. -Q.; Lan, C.; Chuang, F. -C.; Qu, Y.; Ho, J. C. Engineering surface structure of spinel oxides via high-valent vanadium doping for remarkably enhanced electrocatalytic oxygen evolution reaction. ACS Appl. Mater. Int. 2019, 11, 33012-33021.  doi: 10.1021/acsami.9b10868

    30. [30]

      Grimaud, A.; Hong, W. T.; Shao-Horn, Y.; Tarascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 2016, 15, 121-126.  doi: 10.1038/nmat4551

    31. [31]

      Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.  doi: 10.1038/ncomms11053

    32. [32]

      Suntivich, J.; May Kevin, J.; Gasteiger Hubert, A.; Goodenough John, B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.  doi: 10.1126/science.1212858

    33. [33]

      Li, W.; Feng, G.; Wang, S.; Liu, J.; Zhong, X.; Yao, Z.; Deng, S.; Wang, J. Lattice oxygen of PbO2 (101) consuming and refilling via electrochemical ozone production and H2O dissociation. J. Phys. Chem. C 2022, 126, 8627-8636.  doi: 10.1021/acs.jpcc.2c00725

    34. [34]

      Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.  doi: 10.1016/0927-0256(96)00008-0

    35. [35]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.  doi: 10.1103/PhysRevB.54.11169

    36. [36]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.  doi: 10.1103/PhysRevLett.77.3865

    37. [37]

      Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.  doi: 10.1103/PhysRevB.50.17953

    38. [38]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

    39. [39]

      Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978-9985.  doi: 10.1063/1.1323224

    40. [40]

      Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.  doi: 10.1063/1.1329672

    41. [41]

      Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010-7022.  doi: 10.1063/1.480097

    42. [42]

      Heyden, A.; Bell, A. T.; Keil, F. J. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005, 123, 224101.  doi: 10.1063/1.2104507

    43. [43]

      Kästner, J.; Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 2008, 128, 014106.  doi: 10.1063/1.2815812

    44. [44]

      Xiao, P.; Sheppard, D.; Rogal, J.; Henkelman, G. Solid-state dimer method for calculating solid-solid phase transitions. J. Chem. Phys. 2014, 140, 174104.  doi: 10.1063/1.4873437

    45. [45]

      Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695-1697.  doi: 10.1103/PhysRevA.31.1695

    46. [46]

      Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.  doi: 10.1063/1.447334

    47. [47]

      Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338-7364.  doi: 10.1021/jp980939v

    48. [48]

      Chevrier, V. L.; Ong, S. P.; Armiento, R.; Chan, M. K. Y.; Ceder, G. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 2010, 82, 075122.  doi: 10.1103/PhysRevB.82.075122

    49. [49]

      Giannozzi, P.; Car, R.; Scoles, G. Oxygen adsorption on graphite and nanotubes. J. Chem. Phys. 2003, 118, 1003-1006.  doi: 10.1063/1.1536636

    50. [50]

      Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413-7421.  doi: 10.1103/PhysRevB.59.7413

    51. [51]

      Mutter, D.; Urban, D. F.; Elsässer, C. Determination of formation energies and phase diagrams of transition metal oxides with DFT+U. Materials 2020, 13, 4303.  doi: 10.3390/ma13194303

    52. [52]

      Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. Gaussian-1 theory: a general procedure for prediction of molecular energies. J. Chem. Phys. 1989, 90, 5622-5629.  doi: 10.1063/1.456415

    53. [53]

      Sai Gautam, G.; Carter, E. A. Evaluating transition metal oxides within DFT-SCAN and SCAN+U frameworks for solar thermochemical applications. Phys. Rev. Mater. 2018, 2, 095401.  doi: 10.1103/PhysRevMaterials.2.095401

    54. [54]

      Yoo, J. S.; Rong, X.; Liu, Y.; Kolpak, A. M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS. Catal. 2018, 8, 4628-4636.  doi: 10.1021/acscatal.8b00612

    55. [55]

      Gibson, G.; Morgan, A.; Hu, P.; Lin, W. -F. New insights into electrocatalytic ozone generation via splitting of water over PbO2 electrode: a DFT study. Chem. Phys. Lett. 2016, 654, 46-51.  doi: 10.1016/j.cplett.2016.04.078

    56. [56]

      Gu, Y.; Wang, S.; Shi, H.; Yang, J.; Li, S.; Zheng, H.; Jiang, W.; Liu, J.; Zhong, X.; Wang, J. Atomic Pt embedded in BNC nanotubes for enhanced electrochemical ozone production via an oxygen intermediate-rich local environment. ACS Catal. 2021, 11, 5438-5451.  doi: 10.1021/acscatal.1c00413

    57. [57]

      Cao, H.; Zhang, Z.; Chen, J. -W.; Wang, Y. -G. Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 2022, 12, 6606-6617.  doi: 10.1021/acscatal.2c01470

    58. [58]

      Xia, G. J.; Wang, Y. G. Dynamic simulation on surface hydration and dehydration of monoclinic zirconia. Chin. J. Chem. Phys. 2022, 35, 629-638.  doi: 10.1063/1674-0068/cjcp2204062

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    5. [5]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    6. [6]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    7. [7]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    8. [8]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    9. [9]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    10. [10]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    11. [11]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    12. [12]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    13. [13]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    16. [16]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    17. [17]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    18. [18]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    19. [19]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    20. [20]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

Metrics
  • PDF Downloads(25)
  • Abstract views(1024)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return