Citation: Mengqing Li, Weiliang Qi, Jiuyang Yu, Lijuan Shen, Xuhui Yang, Siqi Liu, Min-Quan Yang. Ultrathin ZnIn2S4 Nanosheets Supported Metallic Ni3FeN for Photo-catalytic Coupled Selective Alcohol Oxidation and H2 Evolution[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 2212015-2212024. doi: 10.14102/j.cnki.0254-5861.2022-0147 shu

Ultrathin ZnIn2S4 Nanosheets Supported Metallic Ni3FeN for Photo-catalytic Coupled Selective Alcohol Oxidation and H2 Evolution

Figures(5)

  • Photocatalytic anaerobic organic oxidation coupled with H2 evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals. To achieve a high conversion efficiency, the smart design of efficient catalysts by the right combination of semiconductor light harvesters and cocatalyst is highly required. Herein, we report a composite photocatalyst composed of noble metal-free transition metal nitride Ni3FeN decorated on 2D ultrathin ZnIn2S4 (ZIS) nanosheets for selective oxidation of aromatic alcohols to aldehydes pairing with H2 production. In the composite, ultrathin ZIS serves as a light harvester that greatly shortens the diffusion length of photogenerated charges, while the metallic nitride Ni3FeN acts as an advanced cocatalyst which not only captures the photoelectrons generated from the ultrathin ZIS to promote the charge separation, but also provides active sites to lower the overpotential and accelerate the H2 reduction. The best photocatalytic performance is found on ZIS/1.5% M-Ni3FeN, which shows a H2 generation rate of 2427.9 μmol g-1 h-1 and a benzaldehyde (BAD) production rate of 2460 μmol g-1 h-1, about 7.8-fold as high as that of bare ZIS. This work is anticipated to endorse the exploration of transition metal nitrides as high-performance cocatalysts to promote the coupled photocatalytic organic transformation and H2 production.
  • 加载中
    1. [1]

      Maeda, K.; Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655-2661.  doi: 10.1021/jz1007966

    2. [2]

      Song, H.; Luo, S.; Huang, H.; Deng, B.; Ye, J. Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043-1065.  doi: 10.1021/acsenergylett.1c02591

    3. [3]

      Christoforidis, K. C.; Fornasiero, P. Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem 2017, 9, 1523-1544.  doi: 10.1002/cctc.201601659

    4. [4]

      Wang, Z.; Zhu, H.; Tu, W.; Zhu, X.; Yao, Y.; Zhou, Y.; Zou, Z. Host/guest nanostructured photoanodes integrated with targeted enhancement strategies for photoelectrochemical water splitting. Adv. Sci. 2022, 9, 2103744.  doi: 10.1002/advs.202103744

    5. [5]

      Jiang, X.; Chen, Y. -X.; Lu, C. -Z. Bio-inspired materials for photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 2123-2130.

    6. [6]

      Zhang, M.; Li, H.; Zhang, J.; Lv, H.; Yang, G. -Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855-871.  doi: 10.1016/S1872-2067(20)63714-7

    7. [7]

      Qin, L.; Zhao, C.; Yao, L. -Y.; Dou, H.; Zhang, M.; Xie, J.; Weng, T. -C.; Lv, H.; Yang, G. -Y. Efficient photogeneration of hydrogen boosted by long-lived dye-modified Ir(III) photosensitizers and polyoxometalate catalyst. CCS Chemistry 2022, 4, 259-271.  doi: 10.31635/ccschem.021.202000741

    8. [8]

      Zhang, M.; Xin, X.; Feng, Y.; Zhang, J.; Lv, H.; Yang, G. -Y. Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Appl. Catal. B: Environ. 2022, 303, 120893.  doi: 10.1016/j.apcatb.2021.120893

    9. [9]

      Xue, W.; Chang, W.; Hu, X.; Fan, J.; Liu, E. 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: fabrication mechanism and application potential for photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 152-163.  doi: 10.1016/S1872-2067(20)63593-8

    10. [10]

      Xia, B.; Zhang, Y.; Shi, B.; Ran, J.; Davey, K.; Qiao, S. Z. Photocatalysts for hydrogen evolution coupled with production of value-added chemicals. Small Methods 2020, 4, 2000063.  doi: 10.1002/smtd.202000063

    11. [11]

      Qi, M. -Y.; Conte, M.; Anpo, M.; Tang, Z. -R.; Xu, Y. -J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051-13085.  doi: 10.1021/acs.chemrev.1c00197

    12. [12]

      Wang, J.; Qi, M. -Y.; Wang, X.; Su, W. Cooperative hydrogen production and C-C coupling organic synthesis in one photoredox cycle. Appl. Catal. B: Environ. 2022, 302, 120812.  doi: 10.1016/j.apcatb.2021.120812

    13. [13]

      Kampouri, S.; Stylianou, K. C. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catal. 2019, 9, 4247-4270.  doi: 10.1021/acscatal.9b00332

    14. [14]

      Niu, F.; Tu, W.; Lu, X.; Chi, H.; Zhu, H.; Zhu, X.; Wang, L.; Xiong, Y.; Yao, Y.; Zhou, Y.; Zou, Z. Single Pd-Sx sites in situ coordinated on CdS surface as efficient hydrogen autotransfer shuttles for highly selective visible-light-driven C-N coupling. ACS Catal. 2022, 12, 4481-4490.  doi: 10.1021/acscatal.2c00433

    15. [15]

      Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. Enhanced photocatalytic degradation and H2 evolution performance of N-CDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly. J. Mater. Sci. Technol. 2022, 114, 222-232.  doi: 10.1016/j.jmst.2021.10.030

    16. [16]

      Luo, B.; Liu, G.; Wang, L. Recent advances in 2D materials for photocatalysis. Nanoscale 2016, 8, 6904-6920.  doi: 10.1039/C6NR00546B

    17. [17]

      Tan, C.; Cao, X.; Wu, X. -J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. -H.; Sindoro, M.; Zhang, H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.  doi: 10.1021/acs.chemrev.6b00558

    18. [18]

      Di, J.; Xiong, J.; Li, H.; Liu, Z. Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv. Mater. 2018, 30, 1704548.  doi: 10.1002/adma.201704548

    19. [19]

      Yang, R.; Mei, L.; Fan, Y.; Zhang, Q.; Zhu, R.; Amal, R.; Yin, Z.; Zeng, Z. ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 2021, 5, 2100887.  doi: 10.1002/smtd.202100887

    20. [20]

      Shi, X.; Dai, C.; Wang, X.; Hu, J.; Zhang, J.; Zheng, L.; Mao, L.; Zheng, H.; Zhu, M. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.  doi: 10.1038/s41467-022-28995-1

    21. [21]

      Zhang, T.; Wang, T.; Meng, F.; Yang, M.; Kawi, S. Recent advances in ZnIn2S4-based materials towards photocatalytic purification, solar fuel production and organic transformations. J. Mater. Chem. C 2022, 10, 5400-5424.  doi: 10.1039/D2TC00432A

    22. [22]

      Mei, Z.; Wang, G.; Yan, S.; Wang, J. Rapid microwave-assisted synthesis of 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution. Acta Phys. -Chim. Sin. 2021, 37, 2009097.

    23. [23]

      Li, X.; Lu, S.; Yi, J.; Shen, L.; Chen, Z.; Xue, H.; Qian, Q.; Yang, M. -Q. Ultrathin two-dimensional ZnIn2S4/Nix-B heterostructure for high-performance photocatalytic fine chemical synthesis and H2 generation. ACS Appl. Mater. Interfaces 2022, 14, 25297-25307.  doi: 10.1021/acsami.2c02367

    24. [24]

      Xu, X. T.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Rational design and construction of cocatalysts for semiconductor-based photoelectrochemical oxygen evolution: a comprehensive review. Adv. Sci. 2019, 6, 1801505.  doi: 10.1002/advs.201801505

    25. [25]

      Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900-1909.  doi: 10.1021/ar300227e

    26. [26]

      Xiao, N.; Li, S.; Li, X.; Ge, L.; Gao, Y.; Li, N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chin. J. Catal. 2020, 41, 642-671.  doi: 10.1016/S1872-2067(19)63469-8

    27. [27]

      Zhong, S.; Xi, Y.; Wu, S.; Liu, Q.; Zhao, L.; Bai, S. Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. J. Mater. Chem. A 2020, 8, 14863-14894.  doi: 10.1039/D0TA04977H

    28. [28]

      Jiao, L.; Dong, Y.; Xin, X.; Qin, L.; Lv, H. Facile integration of Ni-substituted polyoxometalate catalysts into mesoporous light-responsive metal-organic framework for effective photogeneration of hydrogen. Appl. Catal. B: Environ. 2021, 291, 120091.  doi: 10.1016/j.apcatb.2021.120091

    29. [29]

      Lu, S.; Weng, B.; Chen, A.; Li, X.; Huang, H.; Sun, X.; Feng, W.; Lei, Y.; Qian, Q.; Yang, M. -Q. Facet engineering of Pd nanocrystals for enhancing photocatalytic hydrogenation: modulation of the Schottky barrier height and enrichment of surface reactants. ACS Appl. Mater. Interfaces 2021, 13, 13044-13054.  doi: 10.1021/acsami.0c19260

    30. [30]

      Zhu, T.; Ye, X.; Zhang, Q.; Hui, Z.; Wang, X.; Chen, S. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid. J. Hazard. Mater. 2019, 367, 277-285.  doi: 10.1016/j.jhazmat.2018.12.093

    31. [31]

      Ouyang, W.; Muñoz-Batista, M. J.; Kubacka, A.; Luque, R.; Fernández-García, M. Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Appl. Catal. B: Environ. 2018, 238, 434-443.  doi: 10.1016/j.apcatb.2018.07.046

    32. [32]

      Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.  doi: 10.1039/C3CS60425J

    33. [33]

      Li, X.; Li, M.; Liu, J.; Yi, J.; Yang, M. -Q.; Qian, Q. Amorphous nickel borate as a high-efficiency cocatalyst for H2 generation and fine chemical synthesis. Catal. Commun. 2022, 162, 106389.  doi: 10.1016/j.catcom.2021.106389

    34. [34]

      Zeng, D.; Zhou, T.; Ong, W. -J.; Wu, M.; Duan, X.; Xu, W.; Chen, Y.; Zhu, Y. -A.; Peng, D. -L. Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 2019, 11, 5651-5660.  doi: 10.1021/acsami.8b20958

    35. [35]

      Shen, R.; Ding, Y.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y. H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25-36.  doi: 10.1016/S1872-2067(20)63600-2

    36. [36]

      Xiong, Z.; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W. -J.; Wang, S. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Phys. -Chim. Sin. 2022, 38, 2111021.

    37. [37]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2021, 37, 2010059.

    38. [38]

      Qi, W.; Wang, C.; Yu, J.; Adimi, S.; Thomas, T.; Guo, H.; Liu, S.; Yang, M. MOF-derived porous ternary nickel iron nitride nanocube as a functional catalyst toward water splitting hydrogen evolution for solar to chemical energy conversion. ACS Appl. Energy Mater. 2022, 5, 6155-6162.  doi: 10.1021/acsaem.2c00564

    39. [39]

      Cheng, Z.; Qi, W.; Pang, C. H.; Thomas, T.; Wu, T.; Liu, S.; Yang, M. Recent advances in transition metal nitride-based materials for photocatalytic applications. Adv. Funct. Mater. 2021, 31, 2100553.  doi: 10.1002/adfm.202100553

    40. [40]

      Zheng, J.; Zhang, W.; Zhang, J.; Lv, M.; Li, S.; Song, H.; Cui, Z.; Du, L.; Liao, S. Recent advances in nanostructured transition metal nitrides for fuel cells. J. Mater. Chem. A 2020, 8, 20803-20818.  doi: 10.1039/D0TA06995G

    41. [41]

      Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354-1390.  doi: 10.1039/D0CS00415D

    42. [42]

      Xiang, Z.; Guan, H.; Zhang, B.; Zhao, Y. Electrostatic self-assembly of 2D-2D CoP/ZnIn2S4 nanosheets for efficient photocatalytic hydrogen evolution. J. Am. Ceram. Soc. 2020, 104, 504-513.

    43. [43]

      Yang, M. -Q.; Xu, Y. -J.; Lu, W.; Zeng, K.; Zhu, H.; Xu, Q. -H.; Ho, G. W. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224.  doi: 10.1038/ncomms14224

    44. [44]

      Luo, D.; Peng, L.; Wang, Y.; Lu, X.; Yang, C.; Xu, X.; Huang, Y.; Ni, Y. Highly efficient photocatalytic water splitting utilizing a WO3-x/ZnIn2S4 ultrathin nanosheet Z-scheme catalyst. J. Mater. Chem. A 2021, 9, 908-914.  doi: 10.1039/D0TA10374H

    45. [45]

      Zhu, Z.; Li, X.; Qu, Y.; Zhou, F.; Wang, Z.; Wang, W.; Zhao, C.; Wang, H.; Li, L.; Yao, Y. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81-90.  doi: 10.1007/s12274-020-3045-9

    46. [46]

      Xu, W.; Tian, W.; Meng, L.; Cao, F.; Li, L. Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv. Energy Mater. 2021, 11, 2003500.  doi: 10.1002/aenm.202003500

    47. [47]

      Li, H.; Ci, S.; Zhang, M.; Chen, J.; Lai, K.; Wen, Z. Facile spraypyrolysis synthesis of yolk-shell earth-abundant elemental nickel-iron-based nanohybrid electrocatalysts for full water splitting. ChemSusChem 2017, 10, 4756-4763.  doi: 10.1002/cssc.201701521

    48. [48]

      Liu, Z.; Tan, H.; Xin, J.; Duan, J.; Su, X.; Hao, P.; Xie, J.; Zhan, J.; Zhang, J.; Wang, J. -J.; Liu, H. Metallic intermediate phase inducing morphological transformation in thermal nitridation: Ni3FeN-based three-dimensional hierarchical electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2018, 10, 3699-3706.  doi: 10.1021/acsami.7b18671

    49. [49]

      Jia, X.; Zhao, Y.; Chen, G.; Shang, L.; Shi, R.; Kang, X.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; Zhang, T. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.  doi: 10.1002/aenm.201502585

    50. [50]

      Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C.; Komarneni, S.; Yang, D.; Yao, X. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245-253.  doi: 10.1021/acsnano.7b05971

    51. [51]

      Li, Z.; Jang, H.; Qin, D.; Jiang, X.; Ji, X.; Kim, M. G.; Zhang, L.; Liu, X.; Cho, J. Alloy-strain-output induced lattice dislocation in Ni3FeN/Ni3Fe ultrathin nanosheets for highly efficient overall water splitting. J. Mater. Chem. A 2021, 9, 4036-4043.  doi: 10.1039/D0TA11618A

    52. [52]

      Wang, X.; Wang, H.; Zhang, H.; Yu, W.; Wang, X.; Zhao, Y.; Zong, X.; Li, C. Dynamic interaction between methylammonium lead Iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting. ACS Energy Lett. 2018, 3, 1159-1164.  doi: 10.1021/acsenergylett.8b00488

    53. [53]

      Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angew. Chem. Int. Ed. 2020, 59, 8255-8261.  doi: 10.1002/anie.202000503

    54. [54]

      Meng, X.; Qi, W.; Kuang, W.; Adimi, S.; Guo, H.; Thomas, T.; Liu, S.; Wang, Z.; Yang, M. Chromium-titanium nitride as an efficient co-catalyst for photocatalytic hydrogen production. J. Mater. Chem. A 2020, 8, 15774-15781.  doi: 10.1039/D0TA00488J

    55. [55]

      Sun, Z.; Chen, H.; Zhang, L.; Lu, D.; Du, P. Enhanced photocatalytic H2 production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst. J. Mater. Chem. A 2016, 4, 13289-13295.  doi: 10.1039/C6TA04696G

    56. [56]

      Wang, S.; Guan, B. Y.; Lou, X. W. D. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037-5040.  doi: 10.1021/jacs.8b02200

    57. [57]

      Makula, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814-6817.  doi: 10.1021/acs.jpclett.8b02892

    58. [58]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. -M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763-4770.  doi: 10.1002/adfm.201200922

    59. [59]

      Prajapati, P. K.; Kumar, A.; Jain, S. L. First photocatalytic synthesis of cyclic carbonates from CO2 and epoxides using CoPc/TiO2 hybrid under mild conditions. ACS Sustain. Chem. Eng. 2018, 6, 7799-7809.  doi: 10.1021/acssuschemeng.8b00755

    60. [60]

      Li, X. l.; Wang, X. J.; Zhu, J. Y.; Li, Y. P.; Zhao, J.; Li, F. T. Fabrication of two-dimensional Ni2P/ZnIn2S4 heterostructures for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2018, 353, 15-24.  doi: 10.1016/j.cej.2018.07.107

    61. [61]

      Xie, W.; Liu, L.; Cui, W.; An, W. Enhancement of photocatalytic activity under visible light irradiation via the AgI@TCNQ core-shell structure. Materials 2019, 12, 1679.  doi: 10.3390/ma12101679

    62. [62]

      Liu, S.; Guo, Z.; Qian, X.; Zhang, J.; Liu, J.; Lin, J. Sonochemical deposition of ultrafine metallic Pt nanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustain. Energy Fuels 2019, 3, 1048-1054.  doi: 10.1039/C9SE00050J

    63. [63]

      Zeng, D.; Lu, Z.; Gao, X.; Wu, B.; Ong, W. -J. Hierarchical flower-like ZnIn2S4 anchored with well-dispersed Ni12P5 nanoparticles for high-quantum-yield photocatalytic H2 evolution under visible light. Catal. Sci. Technol. 2019, 9, 4010-4016.  doi: 10.1039/C9CY00901A

    64. [64]

      Ng, S. W. L.; Gao, M.; Lu, W.; Hong, M.; Ho, G. W. Selective wavelength enhanced photochemical and photothermal H2 generation of classical oxide supported metal catalyst. Adv. Funct. Mater. 2021, 31, 2104750.  doi: 10.1002/adfm.202104750

    65. [65]

      Mei, F.; Li, Z.; Dai, K.; Zhang, J.; Liang, C. Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production. Chin. J. Catal. 2020, 41, 41-49.  doi: 10.1016/S1872-2067(19)63389-9

    66. [66]

      Li, M. -X.; Guan, R. -Q.; Li, J. -X.; Zhao, Z.; Zhang, J. -K.; Dong, C. -C.; Qi, Y. -F.; Zhai, H. -J. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437-1443.

    67. [67]

      Zuo, G.; Wang, Y.; Teo, W. L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; Zhao, Y. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew. Chem. Int. Ed. 2020, 59, 11287-11292.  doi: 10.1002/anie.202002136

    68. [68]

      Chen, T.; Li, M.; Shen, L.; Roeffaers, M. B. J.; Weng, B.; Zhu, H.; Chen, Z.; Yu, D.; Pan, X.; Yang, M. -Q.; Qian, Q. Photocatalytic anaerobic oxidation of aromatic alcohols coupled with H2 production over CsPbBr3/GO-Pt catalysts. Front. Chem. 2022, 10, 833784.  doi: 10.3389/fchem.2022.833784

    69. [69]

      Yu, Z.; Yang, K.; Yu, C.; Lu, K.; Huang, W.; Xu, L.; Zou, L.; Wang, S.; Chen, Z.; Hu, J.; Hou, Y.; Zhu, Y. Steering unit cell dipole and internal elec-tric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction. Adv. Funct. Mater. 2022, 32, 2111999.  doi: 10.1002/adfm.202111999

    70. [70]

      Lim, W. Y.; Wu, H.; Lim, Y. -F.; Ho, G. W. Facilitating the charge transfer of ZnMoS4/CuS p-n heterojunctions through ZnO intercalation for efficient photocatalytic hydrogen generation. J. Mater. Chem. A 2018, 6, 11416-11423.  doi: 10.1039/C8TA02763C

    71. [71]

      Liu, Q.; Wang, M.; He, Y.; Wang, X.; Su, W. Photochemical route for synthesizing Co-P alloy decorated ZnIn2S4 with enhanced photocatalytic H2 production activity under visible light irradiation. Nanoscale 2018, 10, 19100-19106.  doi: 10.1039/C8NR05934A

    72. [72]

      Ma, X. -W.; Lin, H. -F.; Li, Y. -Y.; Wang, L.; Pu, X. -P.; Yi, X. -J. Dramatically enhanced visible-light-responsive H2 evolution of Cd1-xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7-22.

    73. [73]

      Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photocatalytic reduction of CO2 with visible light. Chin. J. Struct. Chem. 2022, 41, 2201007-2201013.

    74. [74]

      Gong, H.; Hao, X.; Li, H.; Jin, Z. A novel materials manganese cadmium sulfide/cobalt nitride for efficiently photocatalytic hydrogen evolution. J. Colloid Interf. Sci. 2021, 585, 217-228.  doi: 10.1016/j.jcis.2020.11.088

    75. [75]

      Zhu, T.; Xiao, Y.; Ren, Y.; Zeng, W.; Pan, A.; Zheng, Y.; Liu, Q. Unusual formation of CoS0.61Se0.25 anion solid solution with sulfur defects to promote electrocatalytic water reduction. ACS Appl. Energy Mater. 2021, 4, 2976-2982.  doi: 10.1021/acsaem.1c00212

    76. [76]

      Chen, Z. -H.; Li, Y. -H.; Qi, M. -Y.; Tang, Z. -R.; Xu, Y. -J. Benzyl alcohol oxidation and hydrogen generation over MoS2/ZnIn2S4 composite photocatalyst. Res. Chem. Intermed. 2022, 48, 1-12.  doi: 10.1007/s11164-021-04636-y

    77. [77]

      Jiang, D.; Chen, X.; Zhang, Z.; Zhang, L.; Wang, Y.; Sun, Z.; Irfan, R. M.; Du, P. Highly efficient simultaneous hydrogen evolution and benzaldehyde production using cadmium sulfide nanorods decorated with small cobalt nanoparticles under visible light. J. Catal. 2018, 357, 147-153.  doi: 10.1016/j.jcat.2017.10.019

    78. [78]

      Sun, Y.; Xue, C.; Chen, L.; Li, Y.; Guo, S.; Shen, Y.; Dong, F.; Shao, G.; Zhang, P. Enhancement of interfacial charge transportation through construction of 2D-2D p-n heterojunctions in hierarchical 3D CNFs/MoS2/ZnIn2S4 composites to enable high-efficiency photocatalytic hydrogen evolution. Sol. RRL 2020, 5, 2000722.

    79. [79]

      Shen, R.; Lu, X.; Zheng, Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts. Sol. RRL 2021, 5, 2100177.  doi: 10.1002/solr.202100177

    80. [80]

      Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981.  doi: 10.1002/adma.201802981

    81. [81]

      Lai, L.; Xing, F.; Cheng, C.; Huang, C. Hierarchical 0D NiSe2/2D ZnIn2S4 nanosheet-assembled microflowers for enhanced photocatalytic hydrogen evolution. Adv. Mater. Interfaces 2021, 8, 2100052.  doi: 10.1002/admi.202100052

    82. [82]

      Wood, A.; Giersig, M.; Mulvaney, P. Fermi level equilibration in quantum dot-metal nanojunctions. J. Phys. Chem. B 2001, 105, 8810-8815.  doi: 10.1021/jp011576t

    83. [83]

      Jakob, M.; Levanon, H.; Kamat, P. V. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett. 2003, 3, 353-358.  doi: 10.1021/nl0340071

    84. [84]

      Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943-4950.  doi: 10.1021/ja0315199

  • 加载中
    1. [1]

      Rui Qi SONG Jian Qing ZENG Bing ZHONG . Effect of Co-solvent on the Palladium Catalyzed Alkoxycarbonylation of Allyl Bromide in Supercritical CO2. Chinese Chemical Letters, 2002, 13(10): 933-934.

    2. [2]

      Zhi Qiang FAN Qi WANG Jian Hua WENG Lin Xian FENG . Novel Aluminoxanes Prepared from AlEt3/Al(i-Bu)3 Mixture as Cocatalyst for Metallocene Catalyzed Ethylene Polymerization. Chinese Chemical Letters, 1998, 9(9): 869-872.

    3. [3]

      Xuesheng YanDaijie DengSuqin WuHenan LiLi Xu . Development of Transition Metal Nitrides as Oxygen and Hydrogen Electrocatalysts. Chinese Journal of Structural Chemistry, 2022, 41(7): 2207004-2207015. doi: 10.14102/j.cnki.0254-5861.2022-0036

    4. [4]

      Yiwen ChenLingling LiQuanlong XuDüren TinaJiajie FanDekun Ma . Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution. Acta Physico-Chimica Sinica, 2021, 37(6): 2009080-0. doi: 10.3866/PKU.WHXB202009080

    5. [5]

      Ziai ZhongLisha ChenLongshuai ZhangFeiyao WuXunheng JiangHaiyan LiuFengrong LvHaiyang XieFanqi MengLingling ZhengJianping Zou . Semi-chemical interaction between graphitic carbon nitride and Pt for boosting photocatalytic hydrogen evolution. Chinese Chemical Letters, 2022, 33(6): 3061-3064. doi: 10.1016/j.cclet.2021.09.057

    6. [6]

      Zhen-Wei Zhang Qiu-Hao Li Xiu-Qing Qiao Dongfang Hou Dong-Sheng Li . One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdS heterojunctions for photocatalytic H2 production under visible light irradiation. Chinese Journal of Catalysis, 2019, 40(3): 371-379. doi: 10.1016/S1872-2067(18)63178-X

    7. [7]

      Yongan Zhu Zhenyi Zhang Na Lu Ruinian Hua Bin Dong . Prolonging charge-separation states by doping lanthanide-ions into {001}/{101} facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution. Chinese Journal of Catalysis, 2019, 40(3): 413-423. doi: 10.1016/S1872-2067(18)63182-1

    8. [8]

      Ming YueYajing FuCanping ZhangJunxiao FuShiquan WangJianwen Liu . Dual-metal zeolite imidazolate framework for efficient lithium storage boosted by synergistic effects and self-assembly 2D nanosheets. Chinese Chemical Letters, 2022, 33(6): 3291-3295. doi: 10.1016/j.cclet.2021.12.015

    9. [9]

      NARAYANAM NagarajuCHINTAKRINDA KalpanaFANG WeihuiZHANG LeiZHANG Jian . Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis. Acta Physico-Chimica Sinica, 2018, 34(7): 781-785. doi: 10.3866/PKU.WHXB201711131

    10. [10]

      Wen-Li CUILin ANQing-Hong ZHANGHong-Zhi WANGYao-Gang LICheng-Yi HOU . FeNi Layered Double Hydroxide/TiO2 Composite Photocatalyst: Preparation and Hydrogen Production Performance. Chinese Journal of Inorganic Chemistry, 2021, 37(5): 867-874. doi: 10.11862/CJIC.2021.108

    11. [11]

      HAO Rui-pengYANG Peng-juWANG Zhi-jianZHU Zhen-ping . Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction. Journal of Fuel Chemistry and Technology, 2015, 43(1): 94-99.

    12. [12]

      Bo LinHao ChenYao ZhouXiao LuoDan TianXiaoqing YanRuihuan DuanJun DiLixing KangAimin ZhouGuidong YangYonghui LiJiadong ZhouZheng LiuFucai Liu . 2D/2D atomic double-layer WS2/Nb2O5 shell/core nanosheets with ultrafast interfacial charge transfer for boosting photocatalytic H2 evolution. Chinese Chemical Letters, 2021, 32(10): 3128-3132. doi: 10.1016/j.cclet.2021.03.057

    13. [13]

      Bo LinBowen MaJiangang ChenYao ZhouJiadong ZhouXiaoqing YanChao XueXiao LuoQing LiuJinyong WangRenji BianGuidong YangFucai Liu . Sea-urchin-like ReS2 nanosheets with charge edge-collection effect as a novel cocatalyst for high-efficiency photocatalytic H2 evolution. Chinese Chemical Letters, 2022, 33(2): 943-947. doi: 10.1016/j.cclet.2021.07.015

    14. [14]

      Guangmei JiangXingyan LiuHuilong JianPeng LuJinwu BaiGuizhi ZhangWen YunSiqi LiYouzhou He . Cu-clusters nodes of 2D metal-organic frameworks as a cost-effective noble-metal-free cocatalyst with high atom-utilization efficiency for efficient photocatalytic hydrogen evolution. Chinese Chemical Letters, 2022, 33(6): 3049-3052. doi: 10.1016/j.cclet.2021.09.047

    15. [15]

      Dai Hong-LiangGeng Yan-FangZeng Qing-DaoWang Chen . Photo-regulation of 2D supramolecular self-assembly: On-surface photochemistry studied by STM. Chinese Chemical Letters, 2017, 28(4): 729-737. doi: 10.1016/j.cclet.2016.09.018

    16. [16]

      ZHAO Feng-mingWU Shi-zhongCHEN Zhao-yangCHU You-qunSHI Mei-qin . Alkali-induced self-assembly Pd/Ni-Mo2C nanocatalyst for ethanol electro-oxidation. Journal of Fuel Chemistry and Technology, 2019, 47(5): 574-581.

    17. [17]

      Chao-Fei XuYue YuQiang LvChang-Cun YanXue-Dong WangLiang-Sheng Liao . Rational self-assembly of polygonal organic microcrystals for shape-dependent multi-directional 2D optical waveguides. Chinese Chemical Letters, 2022, 33(6): 3255-3258. doi: 10.1016/j.cclet.2021.10.076

    18. [18]

      Yi-Lu YangYi-Rong WangGuang-Kuo GaoMing LiuChang MiaoLe-Yan LiWei ChengZi-Yue ZhaoYifa ChenZhifeng XinShun-Li LiDong-Sheng LiYa-Qian Lan . Self-assembly of single metal sites embedded covalent organic frameworks into multi-dimensional nanostructures for efficient CO2 electroreduction. Chinese Chemical Letters, 2022, 33(3): 1439-1444. doi: 10.1016/j.cclet.2021.08.063

    19. [19]

      Lu YanluoTang YanqunLin HeyangFang XiaoyuLu BoLi DanYan Dongpeng . Selective formation of luminescent chiral cocrystal: Molecular self-assembly of 2, 2'-binaphthol and 2-(3-pyridyl)-1H-benzimidazole. Chinese Chemical Letters, 2018, 29(10): 1541-1543. doi: 10.1016/j.cclet.2017.12.021

    20. [20]

      S. WagehAhmed A. Al-GhamdiQuanlong Xu . Core-Shell Au@NiS1+x Cocatalyst for Excellent TiO2 Photocatalytic H2 Production. Acta Physico-Chimica Sinica, 2022, 38(7): 2202001-0. doi: 10.3866/PKU.WHXB202202001

Metrics
  • PDF Downloads(0)
  • Abstract views(29)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return