Citation: Hao Zhang, Ru Sun, Da-Cheng Li, Jian-Min Dou. A Review on Crystalline Porous MOFs Materials in Photocatalytic Transformations of Organic Compounds in Recent Three Years[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221107. doi: 10.14102/j.cnki.0254-5861.2022-0140 shu

A Review on Crystalline Porous MOFs Materials in Photocatalytic Transformations of Organic Compounds in Recent Three Years





  • Author Bio: Hao Zhang received his bachelor's degree from Yantai University in 2019. In the same year, he was admitted to the Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology of Liaocheng University for his master's degree. His current research focuses on molecular complexes and MOFs materials in photocatalytic decomposition of water to produce hydrogen and catalytic conversion of small organic molecules
    Ru Sun graduated from Taishan University with a bachelor's degree. She is currently studying in the Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology of Liaocheng University under the guidance of Prof. Da-Cheng Li. Her main research interests are the synthesis and properties of functionalized POMs
    Da-Cheng Li. Her main research interests are the synthesis and properties of functionalized POMs. Da-Cheng Li graduated from Liaocheng University and obtained the bachelor's degree in 1985. From 1989 to 1991, he studied in the graduate program of analytical chemistry at Shaanxi Normal University. He now works at the Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology of Liaocheng University. In recent years, he has been engaged in the research of borane chemistry, crown ether chemistry, coordination chemistry, drug polycrystal and eutectic
    Jian-Min Dou received his bachelor's degree from Liaocheng University in 1986 and earned his Ph.D. degree at Fudan University in 1998. He has been teaching in Liaocheng University for more than 30 years. His previous research focused on the structure and magnetic properties of metal crown ethers. The current direction is related to energy catalysis including photocatalytic water decomposition, CO2 reduction and degradation of organic pollutants
  • Corresponding author: Jian-Min Dou, jmdou@lcu.edu.cn
  • Hao Zhang and Ru Sun contributed equally to this work.
  • Received Date: 27 May 2022
    Accepted Date: 12 June 2022
    Available Online: 20 June 2022

Figures(20)

  • Metal-organic frameworks (MOFs) have always been the focus of chemists due to their diverse structures, adjustable pore size and high stability since they came into being. In recent years, as one of the most significant applications of MOFs porous materials, photocatalytic organic compounds transformation has made full-grown progress both in the preparation of the catalysts themselves and in the scope of specific applications. Herein, we summarize the research progress of MOFs catalysts for photocatalytic transformations of organic compounds in recent three years. Some outstanding works on the preparation and synthesis strategies of photocatalysts are introduced firstly, including internal optimization and modification of MOFs, POM@MOF composite and core-shell MOF@COF hybrids. The second part is about the application of diverse types of organic reactions, including dual-function organic reactions, catalytic oxidation reactions, comprehensive utilization of CO2 and degradation of organic pollutants. Besides, the development opportunities and some problems to be solved in this field are proposed.
  • 加载中
    1. [1]

      Somnath, C.; Oomman, K.; Maggie, P.; Craig, A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259-1278.  doi: 10.1021/nn9015423

    2. [2]

      Lisa, C.; Karl, D.; Gemma, C.; James, J.; Adrián, G.; Anais, J.; Sebastian, K. Photocatalysis in the life science industry. Chem. Rev. 2022, 122, 2907-2980.  doi: 10.1021/acs.chemrev.1c00416

    3. [3]

      Chen, Z.; Zhou, X.; Yi, J.; Diao, H.; Chen, Q.; Lu, G.; Weng, J. Catalytic decarboxylative fluorosulfonylation enabled by energy-transfer-mediated photocatalysis. Org. Lett. 2022, 24, 2474-2478.  doi: 10.1021/acs.orglett.2c00459

    4. [4]

      Xing, P.; Wu, S.; Chen, Y.; Chen, P.; Hu, X.; Lin, H.; Zhao, L.; He, Y. New application and excellent performance of Ag/KNbO3 nanocomposite in photocatalytic NH3 synthesis. ACS Sustain. Chem. Eng. 2019, 7, 12408-12418.

    5. [5]

      Martyna, C.; Jędrzej, P.; Stefano, C.; Joanna, S.; Maciej, G. Photocatalysis in aqueous micellar media enables divergent C-H arylation and N-dealkylation of benzamides. ACS Catal. 2022, 12, 3543-3549.  doi: 10.1021/acscatal.2c00468

    6. [6]

      Luo, L.; Xiao, X.; Li, Q.; Wang, S.; Li, Y.; Hou, J.; Jiang, B. Engineering of single atomic Cu-N3 active sites for efficient singlet oxygen production in photocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 58596-58604.  doi: 10.1021/acsami.1c17782

    7. [7]

      Zhu, S.; Liu, Y.; Chen, X.; Qu, L.; Yu, B. Polymerization-enhanced photocatalysis for the functionalization of C(sp3)-H bonds. ACS Catal. 2022, 12, 126-134.  doi: 10.1021/acscatal.1c03765

    8. [8]

      He, X.; Yao, X.; Cai, S.; Li, H.; He, L. Visible light-driven carbamoyloxylation of the α-C(sp3)-H bond of arylacetones via radicalinitiated hydrogen atom transfer. Chem. Commun. 2022, 58, 5845-5848.  doi: 10.1039/D2CC01761J

    9. [9]

      Lin, H.; Xu, Y.; Wang, B.; Li, D.; Zhou, T.; Zhang, J. Postsynthetic modification of metal-organic frameworks for photocatalytic applications. Small Struct. 2022, 2100176.

    10. [10]

      Yoshio, N.; Atsuko, Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.  doi: 10.1021/acs.chemrev.7b00161

    11. [11]

      Megan, H.; Jack, T.; David, W. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016, 81, 6898-6926.  doi: 10.1021/acs.joc.6b01449

    12. [12]

      Sun, K.; Shi, A.; Liu, Y.; Chen, X.; Xiang, P.; Wang, X.; Qu, L.; Yu, B. A general electron donor-acceptor complex for photoactivation of arenes via thianthrenation. Chem. Sci. 2022, 13, 5659-5666.  doi: 10.1039/D2SC01241C

    13. [13]

      Wang, C.; Yi, X.; Wang, P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl. Catal. B Environ. 2019, 247, 24-48.  doi: 10.1016/j.apcatb.2019.01.091

    14. [14]

      Yang, Z.; Xiao, W.; Zhang, X.; Liao, S. Organocatalytic cationic degenerate chain transfer polymerization of vinyl ethers with excellent temporal control. Polym. Chem. 2022, 13, 2776-2781.  doi: 10.1039/D2PY00134A

    15. [15]

      Zou, S.; Luo, X.; Chen, C.; Xi, C. Photoredox-catalyzed fluorodifluoroacetylation of alkenes with FSO2CF2CO2Me and Et3N·3HF. Org. Biomol. Chem. 2022, 20, 3726-3730.  doi: 10.1039/D2OB00488G

    16. [16]

      Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin. J. Struct. Chem. 2022, 41, 2201014-2201018.

    17. [17]

      Cai, R.; Zhang, B.; Shi, J.; Li, M.; He, Z. Rapid photocatalytic decolorization of methyl orange under visible light using VS4/carbon powder nanocomposites. ACS Sustainable Chem. Eng. 2017, 5, 7690-7699.  doi: 10.1021/acssuschemeng.7b01137

    18. [18]

      Li, X.; Dai, K.; Pan, C.; Zhang, J. Diethylenetriamine-functionalized CdS nanoparticles decorated on Cu2S snowflake microparticles for photocatalytic hydrogen production. ACS Appl. Nano Mater. 2020, 3, 11517-11526.  doi: 10.1021/acsanm.0c02616

    19. [19]

      Indrani, M.; Vatsala, C.; Raj, K. Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures. ACS Appl. Nano Mater. 2021, 4, 7686-7697.  doi: 10.1021/acsanm.1c00883

    20. [20]

      Marco, P.; Fabrizio, S.; Simone, B.; Marco, Z.; Francesco, P.; Alessandra, B.; Valter, M. Assessing a photocatalytic activity index for TiO2 colloids by controlled periodic illumination. ACS Catal. 2020, 10, 9612-9623.  doi: 10.1021/acscatal.0c02518

    21. [21]

      Wang, J.; Wang, J.; Wang, W.; Wang, Y.; Hu, X.; Liu, J.; Gong, X.; Miao, W.; Ding, L.; Li, X.; Tang, J. Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale 2022, 14, 6709-6734.  doi: 10.1039/D1NR08349J

    22. [22]

      Reshma, B.; Srashti, J.; Chathakudath, P.; Santosh, K.; Satishchandra, O. Direct Z-Scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light. ACS Appl. Mater. Interfaces 2019, 11, 6174-6183.  doi: 10.1021/acsami.8b22434

    23. [23]

      Gao, M.; Feng, J.; Zhang, Z.; Gu, M.; Wang, J.; Zeng, W.; Lv, Y.; Ren, Y.; Wei, T.; Fan, Z. Wrinkled ultrathin graphitic C3N4 nanosheets for photocatalytic degradation of organic wastewater. ACS Appl. Nano Mater. 2018, 1, 6733-6741.  doi: 10.1021/acsanm.8b01528

    24. [24]

      Martin, R.; Huo, P.; Marcel, Š.; Nela, A.; Ivana, T.; Lenka, M.; Jaroslav, L.; Ladislav, S.; Piotr, K.; Michal, R.; Petr, P.; Kamila, K. Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 2016, 120, 8564-8573.  doi: 10.1021/acs.jpca.6b07236

    25. [25]

      Zhang, Q.; Deng, J.; Xu, Z.; Mohamed, C.; Ma, D. High-efficiency broadband C3N4 photocatalysts: synergistic effects from upconversion and plasmons. ACS Catal. 2017, 7, 6225-6234.  doi: 10.1021/acscatal.7b02013

    26. [26]

      Maryam, B.; Ferial, G.; Amirhassan, A.; Masoud, M. Metal-organic framework-based sorbents in analytical sample preparation. Coord. Chem. Rev. 2021, 445, 214107.  doi: 10.1016/j.ccr.2021.214107

    27. [27]

      Li, H.; Wang, K.; Sun, Y.; Christina, T.; Li, J.; Zhou, H. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108-121.  doi: 10.1016/j.mattod.2017.07.006

    28. [28]

      Qiu, S.; Xue, M.; Zhu, G. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116.  doi: 10.1039/C4CS00159A

    29. [29]

      Song, Q.; Yang, Y.; Yuan, F.; Zhu, S.; Wang, J.; Xiang, S.; Zhang, Z. Electrostatic force-driven lattice water bridging to stabilize a partially charged indium MOF for efficient separation of C2H2/CO2 mixtures. J. Mater. Chem. A 2022, 10, 9363-9369.  doi: 10.1039/D1TA10569H

    30. [30]

      Zhou, H.; Susumu, K. Metal-Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.  doi: 10.1039/C4CS90059F

    31. [31]

      Archisman, D.; Amita, S.; Wang, X.; Abhinav, K.; Liu, J. Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm 2020, 22, 7736.  doi: 10.1039/D0CE01087A

    32. [32]

      Li, H.; Zhao, S.; Zang, S.; Liu, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364.  doi: 10.1039/C9CS00778D

    33. [33]

      Li, H.; Zhao, S.; Zang, S.; Liu, J. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242.  doi: 10.1039/C6CS00930A

    34. [34]

      William, P.; Soumya, M.; Nathan, D.; Aamod, V.; Li, J.; Sujit, K. MOF-253-supported Ru complex for photocatalytic CO2 reduction by coupling with semidehydrogenation of 1, 2, 3, 4-tetrahydroisoquinoline (THIQ). Inorg. Chem. 2019, 58, 16574-16580.  doi: 10.1021/acs.inorgchem.9b02593

    35. [35]

      Gong, Y.; Mei, J.; Liu, J.; Huang, H.; Zhang, J.; Li, X.; Zhong, D.; Lu, T. Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis. Appl. Catal. B Environ. 2021, 292, 120156.  doi: 10.1016/j.apcatb.2021.120156

    36. [36]

      Sanchita, K.; Soumitra, B.; Faruk, A.; Tapas, K. Covalent grafting of molecular photosensitizer and catalyst on MOF-808: effect of pore confinement toward visible light-driven CO2 reduction in water. Energy Environ. Sci. 2021, 14, 2429-2440.  doi: 10.1039/D0EE03643A

    37. [37]

      Liao, W.; Zhang, J.; Wang, Z.; Lu, Y.; Yin, S.; Wang, H.; Fan, Y.; Pan, M.; Su, C. Semiconductive amine-functionalized Co(Ⅱ)-MOF for visible-light-driven hydrogen evolution and CO2 reduction. Inorg. Chem. 2018, 57, 11436-11442.  doi: 10.1021/acs.inorgchem.8b01265

    38. [38]

      Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011.  doi: 10.1039/C4CS00094C

    39. [39]

      Tang, Y.; Zhao, L.; Ji, G.; Zhang, Y.; He, C.; Wang, Y.; Wei, J.; Duan, C. Ligand-regulated metal-organic frameworks for synergistic photoredox and nickel catalysis. Inorg. Chem. Front. 2022, DOI: 10.1039/d2qi00173j.  doi: 10.1039/d2qi00173j

    40. [40]

      Cao, L.; Wu, X.; Liu, Y.; Mao, F.; Shi, Y.; Li, J.; Zhu, M.; Dai, S.; Chen, A.; Liu, P.; Yang, H. Electrochemical conversion of CO2 to syngas with a stable H2/CO ratio in a wide potential range over ligand-engineered metal-organic frameworks. J. Mater. Chem. A 2022, 10, 9954-9959.  doi: 10.1039/D1TA09482C

    41. [41]

      Huo, M.; Sun, T.; Wang, Y.; Sun, P.; Dang, J.; Wang, B.; Dharanipragada, N.; Inge, A.; Zhang, W.; Cao, R.; Ma, Y.; Zheng, H. A heteroepitaxially grown two-dimensional metal-organic framework and its derivative for the electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 2022, 10, 10408-10416.  doi: 10.1039/D2TA02313J

    42. [42]

      Li, Z.; Guo, X.; Qiu, J.; Lu, H.; Wang, J.; Lin, J. Recent advances in the applications of thoriumbased metal-organic frameworks and molecular clusters. Dalton Trans. 2022, 51, 7376-7389.  doi: 10.1039/D2DT00265E

    43. [43]

      Yuan, M.; Chen, J.; Zhang, H.; Li, Q.; Zhou, L.; Yang, C.; Liu, R.; Liu, Z.; Zhang, S.; Zhang, G. Host-guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal-organic framework. Energy Environ. Sci. 2022, 15, 2084-2095.  doi: 10.1039/D1EE03918K

    44. [44]

      Zhao, H.; Pang, X.; Huang, Y.; Bai, Y.; Ding, J.; Bai, H.; Fan, W. Electrocatalytic reduction of 4-nitrophenol over Ni-MOF/NF: understanding the self-enrichment effect of H-bonds. Chem. Commun. 2022, 58, 4897.  doi: 10.1039/D2CC00111J

    45. [45]

      Li, M.; Ye, C.; Li, Z.; Lin, Q.; Cao, J.; Liu, F.; Song, G.; Sibudjing, K. 1D confined materials synthesized via a coating method for thermal catalysis and energy storage applications. J. Mater. Chem. A 2022, 10, 6330.  doi: 10.1039/D1TA10540J

    46. [46]

      Shi, J.; Teng, W.; Deng, Z.; Bruce, E.; Zhang, W. Pollutants transformation by metal nanoparticles in confined nanospaces. Environ. Sci.: Nano 2021, 8, 3435.  doi: 10.1039/D1EN00538C

    47. [47]

      Lui, R.; Stephane, R.; Tian, M.; Ivan, D.; Simon, J.; Valeska, P. Manipulation of the crystalline phase diagram of hydrogen through nanoscale confinement effects in porous carbons. Nanoscale 2022, 14, 7250.  doi: 10.1039/D2NR00587E

    48. [48]

      Xiong, M.; Wang, G.; Zhao, S.; Lv, Z.; Xing, S.; Zhang, J.; Zhang, B.; Qin, Y.; Gao, Z. Engineering of platinum-oxygen vacancy interfacial sites in confined catalysts for enhanced hydrogenation selectivity. Catal. Sci. Technol. 2022, 12, 2411.  doi: 10.1039/D2CY00131D

    49. [49]

      Xu, Z.; Sarawoot, I.; Jia, X.; Wang, F.; Shen, Y.; Wang, P.; Zhang, D. SO2-Tolerant catalytic reduction of NOx by confining active species in TiO2 nanotubes. Environ. Sci.: Nano 2022, DOI: 10.1039/d2en00144f.  doi: 10.1039/d2en00144f

    50. [50]

      Li, J.; He, L.; Liu, Q.; Ren, Y.; Jiang, H. Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nat. Commun. 2022, 13, 928.  doi: 10.1038/s41467-022-28474-7

    51. [51]

      Cui, P.; Wang, P.; Zhao, Y.; Sun, W. Fabrication of desired metal-organic frameworks via postsynthetic exchange and sequential linker installation. Cryst. Growth Des. 2019, 19, 1454-1470.  doi: 10.1021/acs.cgd.8b01628

    52. [52]

      Christina, T.; Qin, J.; Pang, J.; Yuan, S.; Benjamin, B.; Zhou, H. Interior decoration of stable Metal-Organic Frameworks. Langmuir 2018, 34, 13795-13807.  doi: 10.1021/acs.langmuir.8b00823

    53. [53]

      Pang, J.; Yuan, S.; Qin, J.; Wu, M.; Christina, T.; Li, J.; Huang, N.; Li, B.; Zhang, P.; Zhou, H. Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary Metal-Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 12328-12332.  doi: 10.1021/jacs.8b07411

    54. [54]

      Pang, J.; Yuan, S.; Qin, J.; Christina, T.; Huang, N.; Li, J.; Wang, Q.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. Tuning the ionicity of stable Metal-Organic Frameworks through ionic linker installation. J. Am. Chem. Soc. 2019, 141, 3129-3136.  doi: 10.1021/jacs.8b12530

    55. [55]

      Yuan, S.; Chen, Y.; Qin, J.; Lu, W.; Zou, L.; Zhang, Q.; Wang, X.; Sun, X.; Zhou, H. Linker installation: engineering pore environment with precisely placed functionalities in zirconium MOFs. J. Am. Chem. Soc. 2016, 138, 8912-8919.  doi: 10.1021/jacs.6b04501

    56. [56]

      Pang, J.; Di, Z.; Qin, J.; Yuan, S.; Christina, T.; Li, j.; Zhang, P.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis. J. Am. Chem. Soc. 2020, 142, 15020-15026.  doi: 10.1021/jacs.0c05758

    57. [57]

      Qiao, G.; Yuan, S.; Pang, J.; Rao, H.; Christina, T.; Dang, D.; Qin, J.; Zhou, H.; Yu, J. Functionalization of zirconium-based metal-organic layers with tailored pore environments for heterogeneous catalysis. Angew. Chem. Int. Ed. 2020, 59, 18224-18228.  doi: 10.1002/anie.202007781

    58. [58]

      Carlos, M.; André, D.; Susana, R.; Isabel, C.; Baltazar, D.; Luís, C.; Salete, S. Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr). Catal. Sci. Technol. 2014, 4, 1416.  doi: 10.1039/c3cy00853c

    59. [59]

      Li, Y.; Gao, Q.; Zhang, L.; Zhou, Y.; Zhong, Y.; Ying, Y.; Zhang, M.; Huang, C.; Wang, Y. H5PV2Mo10O40 encapsulated in MIL-101(Cr): facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard. Dalton Trans. 2018, 47, 6394.  doi: 10.1039/C8DT00572A

    60. [60]

      Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: from synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 2021, 50, 6152.  doi: 10.1039/D0CS00323A

    61. [61]

      Sun, J.; Sara, A.; Pascal, V.; Liu, Y.; Karen, L. POM@MOF hybrids: synthesis and applications. Catalysts 2020, 10, 578.  doi: 10.3390/catal10050578

    62. [62]

      Yuan, M.; Sun, C.; Liu, Y.; Lu, Y.; Zhang, Z.; Li, X.; Tian, H.; Zhang, S.; Liu, S. Synthesis, characterization, and property investigation of a Metal-Organic Framework encapsulated polyoxometalate guests: an advanced inorganic chemistry experiment. J. Chem. Educ. 2020, 97, 4152-4157.  doi: 10.1021/acs.jchemed.0c00905

    63. [63]

      Zhang, S.; Ou, F.; Ning, S.; Cheng, P. Polyoxometalate-based metal-organic frameworks for heterogeneous catalysis. Inorg. Chem. Front. 2021, 8, 1865.  doi: 10.1039/D0QI01407A

    64. [64]

      Youven, B.; Alex, L.; Mathis, D.; Pierre, M.; Maria, G.; Catherine, R.; Thomas, P.; Minh-Huong, H.; Mohamed, H.; Marc, F.; Anne, D.; Capucine, S.; Caroline, M. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based Metal-Organic Framework: in depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9428-9438.  doi: 10.1021/jacs.0c02425

    65. [65]

      Cui, B.; Fu, G. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. Nanoscale 2022, 14, 1679.  doi: 10.1039/D1NR07614K

    66. [66]

      Guo, C.; Duan, F.; Zhang, S.; He, L.; Wang, M.; Chen, J.; Zhang, J.; Jia, Q.; Zhang, Z.; Du, M. Heterostructured hybrids of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). J. Mater. Chem. A 2022, 10, 475.  doi: 10.1039/D1TA06006F

    67. [67]

      Sun, D.; Dong-Pyo, K. Hydrophobic MOFs@metal nanoparticles@COFs for interfacially confined photocatalysis with high efficiency. ACS Appl. Mater. Interfaces 2020, 12, 20589-20595.  doi: 10.1021/acsami.0c04537

    68. [68]

      Tang, H.; Sun, X.; Zhang, F. Development of MOF-based heterostructures for photocatalytic hydrogen evolution. Dalton Trans. 2020, 49, 12136.  doi: 10.1039/D0DT02309D

    69. [69]

      Zhang, H.; Yang, Y.; Li, C.; Tang, H.; Zhang, F.; Zhang, G.; Yan, H. A new strategy for constructing covalently connected MOF@COF core-shell heterostructures for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 16743.  doi: 10.1039/D1TA04493A

    70. [70]

      Zhang, M.; Li J.; Wang, R.; Zhao, S.; Zang, S.; Thomas, C. Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. 2021, 8, 2101884.  doi: 10.1002/advs.202101884

    71. [71]

      Kayhaneh, B.; Ali, M. The role of metal-organic porous frameworks in dual catalysis. Inorg. Chem. Front. 2021, 8, 3618.

    72. [72]

      Chen, L.; Qi, Z.; Peng, X.; Chen, J.; Pao, C, .; Zhang, X.; Dun, C.; Melissa, Y.; David, P.; Jeffrey, J.; Guo, J.; Gabor, A.; Su, J. Insights into the mechanism of methanol steam reforming tandem reaction over CeO2 supported single-site catalysts. J. Am. Chem. Soc. 2021, 143, 12074-12081.  doi: 10.1021/jacs.1c03895

    73. [73]

      Fu, J.; Yang, Y.; Hu, J. Dual-sites tandem catalysts for C-N bond formation via electrocatalytic coupling of CO2 and nitrogenous small molecules. ACS Materials Lett. 2021, 3, 1468-1476.  doi: 10.1021/acsmaterialslett.1c00375

    74. [74]

      Li, Z.; Cheng, H.; Zhang, X.; Ji, M.; Wang, S.; Wang, S. The comparative study on the catalytic activity of Cu-M/Ce0.8Zr0.2O2 (M = W, Nb, Cr and Mo) catalysts with dual-function for the simultaneous removal of NO and CO under oxygen-rich conditions. Catal. Sci. Technol. 2021, 11, 4987.  doi: 10.1039/D1CY00517K

    75. [75]

      Nilanjan, S.; Athulya, S.; Manpreet, S.; Ranadip, G.; Renjith, S.; Subhadip, N. Chemically robust and bifunctional Co(Ⅱ)-framework for trace detection of assorted organo-toxins and highly cooperative Deacetalization-Knoevenagel condensation with pore-fitting-induced size-selectivity. ACS Appl. Mater. Interfaces 2021, 13, 28378-28389.  doi: 10.1021/acsami.1c07273

    76. [76]

      Zhang, Y.; Huang, C.; Mi, L. Metal-organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Trans. 2020, 49, 14723.  doi: 10.1039/D0DT03025B

    77. [77]

      Shi, W.; Quan, Y.; Lan, G.; Ni, K.; Song, Y.; Jiang, X.; Wang, C.; Lin, W. Bifunctional metal-organic layers for tandem catalytic transformations using molecular oxygen and carbon dioxide. J. Am. Chem. Soc. 2021, 143, 16718-16724.  doi: 10.1021/jacs.1c07963

    78. [78]

      Jin, J.; Wu, K.; Liu, X.; Huang, G.; Huang, Y.; Luo, D.; Xie, M.; Zhao, Y.; Lu, W.; Zhou, X.; He, J.; Li, D. Building a pyrazole-benzothiadiazole-pyrazole photosensitizer into Metal-Organic Frameworks for photocatalytic aerobic oxidation. J. Am. Chem. Soc. 2021, 143, 21340-21349.  doi: 10.1021/jacs.1c10008

    79. [79]

      Christian, F.; James, N.; Rebecca, S.; Zhang, X.; Hu, Y.; Yang, S.; Huang, J.; Zhang, J. Symmetry-guided synthesis of N, N'-bicarbazole and porphyrin-based mixed-ligand Metal-Organic Frameworks: light harvesting and energy transfer. J. Am. Chem. Soc. 2021, 143, 20411-20418.  doi: 10.1021/jacs.1c10291

    80. [80]

      Liu, J.; Li, Q.; Xiao, X.; Li, F.; Zhao, C.; Sun, Q.; Qiao, P.; Zhou, J.; Wu, J.; Li, B.; Bao, H.; Jiang, B. Metal-organic frameworks loaded on phosphorus-doped tubular carbon nitride for enhanced photocatalytic hydrogen production and amine oxidation. J. Colloid. Interf. Sci. 2021, 590, 1-11.  doi: 10.1016/j.jcis.2021.01.031

    81. [81]

      Wang, S.; Tang, L.; Cai, B.; Yin, Z.; Li, Y.; Xiong, L.; Kang, X.; Xuan, J.; Pei, Y.; Zhu, M. Ligand modification of Au25 nanoclusters for near-Infrared photocatalytic oxidative functionalization. J. Am. Chem. Soc. 2022, 144, 3787-3792.  doi: 10.1021/jacs.2c01570

    82. [82]

      Liu, S.; Li, Y.; Ding, K.; Chen, W.; Zhang, Y.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068-2076.

    83. [83]

      Md., I.; Raffaele, C.; Gianluca, M.; Luca, N.; Matteo, M. Mechanistic and multiscale aspects of thermocatalytic CO2 conversion to C1 products. Catal. Sci. Technol. 2021, 11, 6601.  doi: 10.1039/D1CY00922B

    84. [84]

      Dao, X.; Sun, W. Single- and mixed-metal-organic framework photocatalysts for carbon dioxide reduction. Inorg. Chem. Front. 2021, 8, 3178.  doi: 10.1039/D1QI00411E

    85. [85]

      Sourav, G.; Arindam, M.; Arnab, S.; Kanika, K.; Subhra, J. Recent progress in materials development for CO2 conversion: issues and challenges. Mater. Adv. 2021, 2, 3161.  doi: 10.1039/D1MA00107H

    86. [86]

      Ma, D.; Jin, T.; Xie, K.; Huang, H. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J. Mater. Chem. A 2021, 9, 20897.  doi: 10.1039/D1TA06101A

    87. [87]

      Siglinda, P.; Kevin, M.; Guy, B.; Gabriele, C. Reuse of CO2 in energy intensive process industries. Chem. Commun. 2021, 57, 10967.  doi: 10.1039/D1CC03154F

    88. [88]

      Xiong, J.; Zhang, M.; Lu, M.; Zhao, K.; Han, C.; Cheng, G.; Wen, Z. Achieving simultaneous Cu particles anchoring in meso-porous TiO2 nanofabrication for enhancing photo-catalytic CO2 reduction through rapid charge separation. Chin. Chem. Lett. 2022, 33, 1313-1316.  doi: 10.1016/j.cclet.2021.07.052

    89. [89]

      Fu, S.; Yao, S.; Guo, S.; Guo, G.; Yuan, W.; Lu, T.; Zhang, Z. Feeding carbonylation with CO2 via the synergy of single-site/nanocluster catalysts in a photosensitizing MOF. J. Am. Chem. Soc. 2021, 143, 20792-20801.  doi: 10.1021/jacs.1c08908

    90. [90]

      Yun, Y.; Sheng, H.; Bao, K.; Xu, L.; Zhang, Y.; Didier, A.; Zhu, M. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126-4130.  doi: 10.1021/jacs.0c00378

    91. [91]

      Khan, I. S.; Mateo, D.; Shterk, G.; Shoinkhorova, T.; Poloneeva, D.; Garzon-Tovar, L.; Gascon, J. An efficient metal-organic framework-derived nickel catalyst for the light driven methanation of CO2. Angew. Chem. Int. Ed. 2021, 60, 26476-26482.  doi: 10.1002/anie.202111854

    92. [92]

      Chen, E.; Qiu, M.; Zhang, Y.; He, L.; Sun, Y.; Zheng, H.; Wu, X.; Zhang, J.; Lin, Q. Energy band alignment and redox-active sites in metalloporphyrin-spaced metal-catechol frameworks for enhanced CO2 photoreduction. Angew. Chem. Int. Ed. 2022, 61, e202111622.

    93. [93]

      Ana, A.; Sara, R.; Iv´an, O.; Ana, T.; Marta, L.; Fabrice, S.; Daniel, A.; Sara, B.; David, Á.; Patricia, H. Ultrafast reproducible synthesis of a Agnanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow. J. Mater. Chem. A 2021, 9, 15704.  doi: 10.1039/D1TA02251B

    94. [94]

      Ajay, L.; Anil, M. Reduced graphene oxide-decorated CdS/ZnO nanocomposites for photoreduction of hexavalent chromium and photodegradation of methylene blue. Dalton Trans. 2021, 50, 14163.  doi: 10.1039/D1DT02192C

    95. [95]

      Ayushi, S.; Ashish, K.; Liu, J.; Abhinav, K. Syntheses, design strategies, and photocatalytic charge dynamics of metal-organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes. Catal. Sci. Technol. 2021, 11, 3946.  doi: 10.1039/D0CY02275F

    96. [96]

      Bui, T.; Nguyen, V.; Nguyen, T. The development of biomass-derived carbonbased photocatalysts for the visible-light-driven photodegradation of pollutants: a comprehensive review. RSC Adv. 2021, 11, 30574.  doi: 10.1039/D1RA05079F

    97. [97]

      Zhang, B.; He, X.; Yu, C.; Liu, G.; Ma, D.; Cui, C.; Yan, Q.; Zhang, Y.; Zhang, G.; Ma, J.; Xin, Y. Degradation of tetracycline hydrochloride by ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst: influencing factors, products and mechanism insight. Chin. Chem. Lett. 2022, 33, 1337-1342.  doi: 10.1016/j.cclet.2021.08.008

    98. [98]

      Xia, Z.; Shi, B.; Zhu, W.; Lü, C. Temperature-responsive polymer-tethered Zr-porphyrin MOFs encapsulated carbon dot nanohybrids with boosted visible-light photodegradation for organic contaminants in water. Chem. Eng. J. 2021, 426, 131794.  doi: 10.1016/j.cej.2021.131794

    99. [99]

      Wang, J.; Cao, C.; Wang, J.; Zhang, Y.; Zhu, L. Insights into highly efficient photodegradation of poly/perfluoroalkyl substances by In-MOF/BiOF heterojunctions: built-in electric field and strong surface adsorption. Appl. Catal. B Environ. 2022, 304, 121013.  doi: 10.1016/j.apcatb.2021.121013

    100. [100]

      Chen, P.; He, X.; Pang, M.; Dong, X.; Zhao, S.; Zhang, W. Iodine capture using Zr-based Metal-Organic Frameworks (Zr MOFs): adsorption performance and mechanism. ACS Appl. Mater. Interfaces 2020, 12, 20429-20439.  doi: 10.1021/acsami.0c02129

    101. [101]

      Gao, K.; Li, H.; Meng, Q.; Wu, J.; Hou, H. Efficient and selective visible-light-driven oxidative coupling of amines to imines in air over CdS@Zr-MOFs. ACS Appl. Mater. Interfaces 2021, 13, 2779-2787.  doi: 10.1021/acsami.0c21007

    102. [102]

      Huang, G.; Chen, J.; Huang, Y.; Wu, K.; Luo, D.; Jin, J.; Zheng, J.; Xu, S.; Lu, W. Mixed-linker isoreticular Zn(Ⅱ) metal-organic frameworks as Brønsted acid-base bifunctional catalysts for Knoevenagel condensation reactions. Inorg. Chem. 2022, DOI:10.1021/acs.inorgchem.2c00941.  doi: 10.1021/acs.inorgchem.2c00941

    103. [103]

      Tang, D.; Yang, X.; Wang, B.; Ding, Y.; Xu, S.; Liu, J.; Peng, Y.; Yu, X.; Su, Z.; Qin, X. One-step electrochemical growth of 2D/3D Zn(Ⅱ)-MOF hybrid nanocomposites on an electrode and utilization of a PtNPs@2D MOF nanocatalyst for electrochemical immunoassay. ACS Appl. Mater. Interfaces 2021, 13, 46225-46232.  doi: 10.1021/acsami.1c09095

    104. [104]

      Yuan, S.; Qin, J.; Xu, H.; Su, J.; Daniel, R.; Chen, Y.; Zhang, L.; Christina, L.; Wang, Q.; Son, D.; Xu, H.; Huang, Z.; Zou, X.; Zhou, H. [Ti8Zr2O12(COO)16] cluster: an ideal inorganic building unit for photoactive metal-organic frameworks. ACS Cent. Sci. 2018, 4, 105-111.  doi: 10.1021/acscentsci.7b00497

    105. [105]

      Ha, L.; Thanh, T.; Dinh, L.; Tan, L.; Viet, Q.; Nam, T. A Titaniumorganic framework: engineering of the band-gap energy for photocatalytic property enhancement. ACS Catal. 2017, 7, 338-342.  doi: 10.1021/acscatal.6b02642

    106. [106]

      Vieira, C.; Maurin, G.; Leitão, A. Computational exploration of the catalytic degradation of sarin and its simulants by a titanium metal-organic framework. J. Phys. Chem. C 2019, 123, 19077-19086.  doi: 10.1021/acs.jpcc.9b05838

  • 加载中
    1. [1]

      Haiming Yang Linhao Xue Xiaogang Yang Hui Xu Junkuo Gao . Advances in Metal-Organic Frameworks for Efficient Separation and Purification of Natural Gas. Chinese Journal of Structural Chemistry, 2023, 42(2): 100034-100034. doi: 10.1016/j.cjsc.2023.100034

    2. [2]

      FAN Yi-KangXIE BinXIE FengWU Wei-PingZOU Li-KeNAREN Ge-Ri-LeaWEI Jiana . Two 3D Metal-organic Frameworks with 4-Fold[2+2]-type Interpenetrated hms Nets Based on a Flexible Tricarboxylic Acid. Chinese Journal of Structural Chemistry, 2016, 35(4): 605-614. doi: 10.14102/j.cnki.0254-5861.2011-0898

    3. [3]

      GUO Zhen-GangLIU Yi . A One-dimensional Metal-organic Framework of Eu(Ⅲ) from Triazine-based Flexible Polycarboxylate and Bidentate Nitrogen Donor Ligand. Chinese Journal of Structural Chemistry, 2015, 34(1): 103-109. doi: 10.14102/j.cnki.0254-5861.2011-0408

    4. [4]

      LI Qing-QingDONG Ya-WenMao Fei-FeiWANG Kuai-BingWU HuaZHANG Qi-Chun . Recent Progress in Metal-Organic Frameworks for White-Light Emission. Chinese Journal of Inorganic Chemistry, 2020, 36(6): 983-1000. doi: 10.11862/CJIC.2020.119

    5. [5]

      Huiping SunZuoxi LiYu GuChunxian Guo . A Review on the Progress of Metal-Organic Frameworks in Electrochemiluminescence Sensors. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211018-2211030. doi: 10.14102/j.cnki.0254-5861.2022-0126

    6. [6]

      ZHANG TingMA Shi-JiePAN YiGUAN Ji-BiaoZHANG MingZHU HanDU Ming-Liang . Honeycomb-like Carbon Materials Derived from Pomelo Peels for the Simultaneous Detection of Heavy Metal Ions. Chinese Journal of Inorganic Chemistry, 2019, 35(4): 674-686. doi: 10.11862/CJIC.2019.077

    7. [7]

      ZHAO TianIshtvan BoldogChristoph JaniakLIU Yue-Jun . Effect of Metal-Organic Frameworks on the Spin-Transition Behavior of [Fe(HB(pz)3)2]. Chinese Journal of Inorganic Chemistry, 2017, 33(8): 1330-1338. doi: 10.11862/CJIC.2017.178

    8. [8]

      Xin HEShun-Lin ZHANGTian-Yu XIAODun-Ru ZHU . Two Metal-Organic Frameworks Built from 2, 2'-Dimethyl-4, 4'-biphenyldicarboxylic Acid. Chinese Journal of Inorganic Chemistry, 2021, 37(5): 945-952. doi: 10.11862/CJIC.2021.079

    9. [9]

      Bai-Tong NIUWang-Nan XIAZhao-Qin LAIHong-Xu GUOZhang-Xu CHEN . Solvent-Controlled Morphology of Ni-BTC and Ni-BDC Metal-Organic Frameworks for Supercapacitors. Chinese Journal of Inorganic Chemistry, 2022, 38(8): 1643-1654. doi: 10.11862/CJIC.2022.160

    10. [10]

      Yang-Zheng CAOWei PANChuan-Jiang ZHOUJun-Yong ZHANGHao XUChun-Hua GONGHui-Ting XURun-Pu SHENSui-Jun LIUJing-Li XIE . A Series of Metal-Organic Frameworks Based on Mixed Ligand Strategy: Synthesis, Structures, and Properties. Chinese Journal of Inorganic Chemistry, 2022, 38(11): 2143-2153. doi: 10.11862/CJIC.2022.229

    11. [11]

      Xin ZHANGZhen-Xia CHENYong-Tai YANGMing-Li DENGLin-Hong WENG . Effect of Fluorination on the Crystal Structure, Stability and Gas Adsorption Property in Zinc(II) Metal-organic Frameworks. Chinese Journal of Structural Chemistry, 2022, 41(2): 2202049-2202056. doi: 10.14102/j.cnki.0254-5861.2011-3264

    12. [12]

      Qi-Chao ZOUYan MADian-Jun CHIHong-Bin QIAOJun-Ying ZHANGQian CHENYu-Die SUNJian ZHANGKui ZHANGSheng-Jun LIU . Synthesis of Quasi-MIL-53(Fe) Photocatalysts for Enhanced Visible Light Photocatalytic Degradation of Organic Dyes. Chinese Journal of Inorganic Chemistry, 2021, 37(12): 2289-2297. doi: 10.11862/CJIC.2021.240

    13. [13]

      XUE Jun-RuHE ZhanZHANG Shu-FangLIANG YueZHANG XiaJING Lin-HaiQIN Da-Bin . Syntheses, Structures, Luminescence and Magnetic Properties of Three New Metal-organic Frameworks Based on Rigid Carbazole Ligand. Chinese Journal of Structural Chemistry, 2016, 35(10): 1574-1581. doi: 10.14102/j.cnki.0254-5861.2011-1090

    14. [14]

      LIU Zhi-QiangCAO Shi-HuZHANG ZheWU Jun-FengZHAO YueSUN Wei-Yin . Metal-Organic Frameworks with 2, 6-Di(1H-imidazol-1-yl)naphthalene and Dicarboxylate Ligands: Synthesis, Crystal Structure and Photoluminescence Sensing Property. Chinese Journal of Inorganic Chemistry, 2019, 35(11): 2145-2151. doi: 10.11862/CJIC.2019.225

    15. [15]

      LIU Zhi-QiangWU Jun-FengCHEN JunWU XiaWANG Yan . Two Metal-Organic Frameworks Constructed by 1, 3-Di(1H-imidazol-4-yl) Ligand: Synthesis, Crystal Structure and Photoluminescence Property. Chinese Journal of Inorganic Chemistry, 2020, 36(1): 159-164. doi: 10.11862/CJIC.2020.003

    16. [16]

      Chang-Pu WanJun-Dong YiRong CaoYuan-Biao Huang . Conductive Metal/Covalent Organic Frameworks for CO2 Electroreduction. Chinese Journal of Structural Chemistry, 2022, 41(5): 2205001-2205014. doi: 10.14102/j.cnki.0254-5861.2022-0075

    17. [17]

      LI JiangHAN SenCHEN Tuan-JieGOU Zhao-XiZHANG QiNIE Xiao-SahuangCAO Hai-Ru . Two Homologous Metal-Organic Frameworks Based on Zn(Ⅱ) and Cd(Ⅱ): Luminescent Sensors for Nitro Aromatic Compounds in Solution and Vapor Medium. Chinese Journal of Inorganic Chemistry, 2019, 35(10): 1843-1852. doi: 10.11862/CJIC.2019.204

    18. [18]

      ZHAO LunCHEN Rui-ZhanWANG Zi-Chen . Syntheses, Characterizations and Luminescence Properties of Two Cd(Ⅱ) Metal-Organic Frameworks Based on 3, 5-Bis (4-carboxy-phenoxy) benzoic Acid with N-donor Ligand 1, 3-Bis (imidazolyl) propane. Chinese Journal of Inorganic Chemistry, 2016, 32(7): 1190-1198. doi: 10.11862/CJIC.2016.144

    19. [19]

      WU Qi-QiWEN Yi-Hang . Tb(Ⅲ)-Based Metal-Organic Framework for Simultaneously Luminescent Detection of Cu2+ and Fe3+ Ions. Chinese Journal of Inorganic Chemistry, 2020, 36(5): 941-948. doi: 10.11862/CJIC.2020.116

    20. [20]

      AlamgirYan-Long ZHAOTalha KhalidYa-Bo XIELu WANGLin-Hua XIEXin ZHANGJian-Rong LI . An Interpenetrated Anionic In(Ⅲ) Metal-Organic Framework for Selective Sensing of Fe3+ in Water. Chinese Journal of Inorganic Chemistry, 2022, 38(9): 1817-1824. doi: 10.11862/CJIC.2022.174

Metrics
  • PDF Downloads(17)
  • Abstract views(320)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return