Citation: Jianing Mao, Bingbao Mei, Ji Li, Shuai Yang, Fanfei Sun, Siyu Lu, Wei Chen, Fei Song, Zheng Jiang. Unraveling the Dynamic Structural Evolution of Phthalocyanine Catalysts during CO2 Electroreduction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 2210082-2210088. doi: 10.14102/j.cnki.0254-5861.2022-0133 shu

Unraveling the Dynamic Structural Evolution of Phthalocyanine Catalysts during CO2 Electroreduction

Figures(4)

  • Understanding the atomic and electronic changes of active sites promotes the whole new sight into electrochemical carbon dioxide reduction reaction (CO2RR), which provides a feasible strategy to achieve carbon neutrality. Here we employ operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) to track the structural evolution of Ni(II) phthalocyanine (NiPc), considered as the model catalysts with uniform Ni-N4-C8 moiety, during the CO2RR. The HERFD-XAS method is in favor of elucidating the interaction of the reactant/catalyst interface from the atomic electronic structure dimension, facilitating the establishment of the catalytic mechanism and the dynamic structure changes. Based on operando measurement, surface sensitive difference spectra (∆µ) and spectroscopy simulation, the interfacial interactions between the active sites of NiPc and reactants are monitored and the Ni species gradually reduced by increasing the applied potential is discovered. HERFD-XAS method offers an advanced and powerful tool for elucidating the complex catalytic mechanism in further various systems.
  • 加载中
    1. [1]

      Li, J.; Gong, J. Operando characterization techniques for electrocatalysis. Energy Environ. Sci. 2020, 13, 3748-3779.  doi: 10.1039/D0EE01706J

    2. [2]

      Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; De Arquer, F. P.; Safaei, T. S.; Mepham, A.; Klinkova, A.; Kumacheva, E.; Filleter, T.; Sinton, D.; Kelley, S. O.; Sargent, E. H. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382-386.  doi: 10.1038/nature19060

    3. [3]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631-675.
       

    4. [4]

      Zhang, Y. -J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 2014, 4, 3742-3748.

    5. [5]

      Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.  doi: 10.1038/ncomms5948

    6. [6]

      Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev. 2018, 118, 4631-4701.  doi: 10.1021/acs.chemrev.7b00459

    7. [7]

      Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulie, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Isci, U.; Berlinguette, C. P.; Robert, M. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 2019, 10, 3602.  doi: 10.1038/s41467-019-11542-w

    8. [8]

      Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S.; Liang, Y. Y.; Feng, Z. X.; Wang, H. L. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.  doi: 10.1038/s41467-018-02819-7

    9. [9]

      Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639-642.  doi: 10.1038/s41586-019-1760-8

    10. [10]

      Liu, J. Catalysis by supported single metal atoms. ACS Catal. 2016, 7, 34-59.
       

    11. [11]

      Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498-1501.  doi: 10.1126/science.1260526

    12. [12]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.

    13. [13]

      Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C. T.; De Luna, P.; Yu, Z.; Rasouli, A. S.; Brodersen, P.; Sun, S.; Voznyy, O.; Tan, C. S.; Askerka, M.; Che, F.; Liu, M.; Seifitokaldani, A.; Pang, Y.; Lo, S. C.; Ip, A.; Ulissi, Z.; Sargent, E. H. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178-183.  doi: 10.1038/s41586-020-2242-8

    14. [14]

      Li, Y.; Cheng, W.; Su, H.; Zhao, X.; He, J.; Liu, Q. Operando infrared spectroscopic insights into the dynamic evolution of liquid-solid (photo)electrochemical interfaces. Nano Energy 2020, 77, 105121.  doi: 10.1016/j.nanoen.2020.105121

    15. [15]

      Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. -Y.; Feliu, J. M.; Williams, C. T.; Tian, Z. -Q.; Li, J. F. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2018, 4, 60-67.
       

    16. [16]

      Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; De Araujo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.
       

    17. [17]

      Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X.; Zhu, K.; Jiao, F. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 2015, 137, 4223-4229.
       

    18. [18]

      Hu, C.; Ma, Q.; Hung, S. -F.; Chen, Z. -N.; Ou, D.; Ren, B.; Chen, H. M.; Fu, G.; Zheng, N. In Situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis. Chem. 2017, 3, 122-133.
       

    19. [19]

      Mei, B.; Liu, C.; Li, J.; Gu, S.; Du, X.; Lu, S.; Song, F.; Xu, W.; Jiang, Z. Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper(II) phthalocyanine for electroreduction of CO2. J. Energy Chem. 2022, 64, 1-7.

    20. [20]

      Hung, S. F.; Chan, Y. T.; Chang, C. C.; Tsai, M. K.; Liao, Y. F.; Hiraoka, N.; Hsu, C. S.; Chen, H. M. Identification of stabilizing high valent active sites by operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy for high-efficiency water oxidation. J. Am. Chem. Soc. 2018, 140, 17263-17270.
       

    21. [21]

      Kanan, M. W.; Yano, J.; Surendranath, Y.; Dinca, M.; Yachandra, V. K.; Nocera, D. G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 2010, 132, 13692-13701.
       

    22. [22]

      Eisenberger, P.; Platzman, P. M.; Winick, H. X-ray resonant Raman scattering: observation of characteristic radiation narrower than the lifetime width. Phys. Rev. Lett. 1976, 36, 623-626.
       

    23. [23]

      Bauer, M. HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? Phys. Chem. Chem. Phys. 2014, 16, 13827-13837.

    24. [24]

      Srivastava, U. C.; Nigam, H. L. X-ray absorption edge spectrometry (XAES) as applied to coordination chemistry. Coord. Chem. Rev. 1973, 9, 275-310.
       

    25. [25]

      Mei, B.; Gu, S.; Du, X.; Li, Z.; Cao, H.; Song, F.; Huang, Y.; Jiang, Z. A wavelength-dispersive X-ray spectrometer for in/ex situ resonant inelastic X-ray scattering studies. X-ray Spectrom. 2019, 49, 251-259.

    26. [26]

      Bergmann, U.; Glatzel, P. X-ray emission spectroscopy. Photosynth. Res. 2009, 102, 255-266.
       

    27. [27]

      Al Samarai, M.; Delgado-Jaime, M. U.; Ishii, H.; Hiraoka, N.; Tsuei, K. -D.; Rueff, J. P.; Lassale-Kaiser, B.; Weckhuysen, B. M.; De Groot, F. M. F. 1s3p Resonant inelastic X-ray scattering of cobalt oxides and sulfides. J. Phys. Chem. C 2016, 120, 24063-24069.
       

    28. [28]

      Yamamoto, T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-ray Spectrom. 2008, 37, 572-584.

    29. [29]

      Rossi, G.; D'Acapito, F.; Amidani, L.; Boscherini, F.; Pedio, M. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra. Phys. Chem. Chem. Phys. 2016, 18, 23686-23694.
       

    30. [30]

      Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P.; Mukerjee, S. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano. 2015, 9, 12496-12505.

    31. [31]

      Yang, H. B.; Hung, S. -F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H. -Y.; Cai, W.; Chen, R.; Gao, J.; Yang, X.; Chen, W.; Huang, Y.; Chen, H. M.; Li, C. M.; Zhang, T.; Liu, B. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140-147.
       

    32. [32]

      Hammer, B.; Norskov, J. Why gold is the noblest of all the metals. Nature 1995, 376, 238-240.
       

    33. [33]

      Norskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 937-943.

    34. [34]

      Bunau, O.; Joly, Y. Self-consistent aspects of X-ray absorption calculations. J. Phys. : Condens. Matter. 2009, 21, 345501.
       

    35. [35]

      Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115-13118.
       

    36. [36]

      Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
       

    37. [37]

      Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
       

    38. [38]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
       

  • 加载中
    1. [1]

      WANG HuanKONG JiaoWANG Mei-junCHANG Li-ping . Structural evolution of a bituminous coal char related to its synchronized gasification behavior with H2O and/or CO2. Journal of Fuel Chemistry and Technology, 2019, 47(4): 393-401.

    2. [2]

      Hao ZhangCaihong HeSumei HanZeyang DuLing WangQinbai YunWenbin CaoBowei ZhangYa-Hui TianQipeng Lu . Crystal facet-dependent electrocatalytic performance of metallic Cu in CO2 reduction reactions. Chinese Chemical Letters, 2022, 33(8): 3641-3649. doi: 10.1016/j.cclet.2021.12.018

    3. [3]

      Yongxia ShiMan HouJunjun LiLi LiZhicheng Zhang . Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction. Acta Physico-Chimica Sinica, 2022, 38(11): 2206020-0. doi: 10.3866/PKU.WHXB202206020

    4. [4]

      WANG YanLI XiongHU ShanweiXU QianJU HuanxinZHU Junfa . Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2. Acta Physico-Chimica Sinica, 2018, 34(12): 1381-1389. doi: 10.3866/PKU.WHXB201804092

    5. [5]

      Baoling TianShujuan LiShulai LeiLiangxu LinWenyue GuoHao Ren . Structural insights of catalytic intermediates in dialumene based CO2 capture: Evidences from theoretical resonance Raman spectra. Chinese Chemical Letters, 2021, 32(8): 2469-2473. doi: 10.1016/j.cclet.2021.02.011

    6. [6]

      Hao LeiduanSun Zhenyu . Metal Oxide-Based Materials for Electrochemical CO2 Reduction. Acta Physico-Chimica Sinica, 2021, 37(7): 2009033-0. doi: 10.3866/PKU.WHXB202009033

    7. [7]

      Xiu-Hui ZHAODe-Huang ZHUOQing-Song CHENGuo-Cong GUO . Enhancing Electrochemical Reduction of CO2 to Formate by Regulating the Support Morphology. Chinese Journal of Structural Chemistry, 2021, 40(3): 376-382. doi: 10.14102/j.cnki.0254–5861.2011–2903

    8. [8]

      Wen LI Yuan Qi YIN Rui Ling HOU Pei Ju NHENG . The Evolution of IR Spectra of H2 Adsorbed on ZrO2 with Changing Temperature(298-723K). Chinese Chemical Letters, 1996, 7(11): 1051-1053.

    9. [9]

      Yuting SunShuang WangDongxu JiaoFengyu LiSiyao QiuZhongxu WangQinghai CaiJingxiang ZhaoChenghua Sun . Two-dimensional Pt2P3 monolayer: A promising bifunctional electrocatalyst with different active sites for hydrogen evolution and CO2 reduction. Chinese Chemical Letters, 2022, 33(8): 3987-3992. doi: 10.1016/j.cclet.2021.11.034

    10. [10]

      Zheng Ping HAO Li Dun AN Hong Li WANG . THE SUPPORTED GOLD CATALYSTS FOR CLOSED CYCLE CO2 LASER. Chinese Chemical Letters, 1995, 6(5): 447-448.

    11. [11]

      Cui XinjiangShi Feng . Selective Conversion of CO2 by Single-Site Catalysts. Acta Physico-Chimica Sinica, 2021, 37(5): 2006080-0. doi: 10.3866/PKU.WHXB202006080

    12. [12]

      Hongyu MaYong LiuRui XiongJianhong Wei . Hetero-structured ZnIn2S4-NiO@MOF photo-catalysts for efficient hydrogen evolution. Chinese Chemical Letters, 2022, 33(2): 1042-1046. doi: 10.1016/j.cclet.2021.08.048

    13. [13]

      Qin TianQian YaoZhang FanLin Bo-Lin . Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. Chinese Chemical Letters, 2019, 30(2): 314-318. doi: 10.1016/j.cclet.2018.07.003

    14. [14]

      Luo DaibingLiu ShanhuNakata KazuyaFujishima Akira . Electrochemical reduction of CO2 and degradation of KHP on boron-doped diamond electrodes in a simultaneous and enhanced process. Chinese Chemical Letters, 2019, 30(2): 509-512. doi: 10.1016/j.cclet.2018.06.010

    15. [15]

      Xiaoxiong HuangYingjie MaLinjie Zhi . Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction. Acta Physico-Chimica Sinica, 2022, 38(2): 2011050-0. doi: 10.3866/PKU.WHXB202011050

    16. [16]

      Zengqiang GaoJunjun LiZhicheng ZhangWenping Hu . Recent advances in carbon-based materials for electrochemical CO2 reduction reaction. Chinese Chemical Letters, 2022, 33(5): 2270-2280. doi: 10.1016/j.cclet.2021.09.037

    17. [17]

      Ming Hong ZHONG Bu Xing HAN Jie KE Zhi Min LIU Hai Ke YAN Ding Yu PENG . A New Model for Correlating the Solubility of Solids in Supercritical CO2 and Study on Some Systems (Ⅱ):Correlation and Prediction. Chinese Chemical Letters, 1998, 9(3): 295-298.

    18. [18]

      Sun JieKong WenhanJin ZhaoyongHan YaqianMa LiangyuDing XiaotengNiu YushengXu Yuanhong . Recent advances of MXene as promising catalysts for electrochemical nitrogen reduction reaction. Chinese Chemical Letters, 2020, 31(4): 953-960. doi: 10.1016/j.cclet.2020.01.035

    19. [19]

      Yanming LiuHaolei YangXinfei FanBing ShanThomas J. Meyer . Promoting electrochemical reduction of CO2 to ethanol by B/N-doped sp3/sp2 nanocarbon electrode. Chinese Chemical Letters, 2022, 33(10): 4691-4694. doi: 10.1016/j.cclet.2021.12.063

    20. [20]

      HIGAKI TatsuyaJIN Rongchao . Structural Evolution Patterns of FCC-Type Gold Nanoclusters. Acta Physico-Chimica Sinica, 2018, 34(7): 755-761. doi: 10.3866/PKU.WHXB201801191

Metrics
  • PDF Downloads(0)
  • Abstract views(37)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return