Citation: Zhengyi Di, Xinjing Zheng, Yu Qi, Heng Yuan, Cheng-Peng Li. Recent Advances in C2 Gases Separation and Purification by Metal-Organic Frameworks[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221103. doi: 10.14102/j.cnki.0254-5861.2022-0132 shu

Recent Advances in C2 Gases Separation and Purification by Metal-Organic Frameworks

  • Author Bio: Zhengyi Di received his PhD degree at Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences in 2021. In the same year, he joined College of Chemistry, Tianjin Normal University. His current research interest focuses on the synthesis and functionalization of crystalline porous materials for gases and anion pollutant adsorption and separation
    Xinjing Zheng received her B.S. degree of Engineering at Taishan University in 2020. She is currently pursuing her M.S. degree at Tianjin Normal University, and her current research focuses on the adsorption properties of HOFs materials
    Yu Qi was born in 1998 in Liaoning Province, China. She received her BS in 2021 from Shenyang Normal University. Currently, she is a postgraduate student at Tianjin Normal University and mainly focuses on crystalline porous materials for gases separation
    Heng Yuan is currently an undergraduate student at College of Chemistry, Tianjin Normal University. In 2020, She joined Prof. Li's group to conduct research on the design and synthesis of porous crystalline materials (MOFs and HOFs)
    Cheng-Peng Li was born in Shanxi Province, China (1981). He received his BS (2003) and MS (2006) from Tianjin Normal University and subsequently his PhD from Tianjin University (2009). He then joined the faculty at Tianjin Normal University and is now a Professor of Chemistry. He has worked with Prof. Wuzong Zhou at University of St Andrews. His current research lies in porous crystalline materials (MOFs, COFs, and HOFs) and their applications in adsorption and catalysis
  • Corresponding author: Cheng-Peng Li,
  • Received Date: 20 May 2022
    Accepted Date: 31 May 2022
    Available Online: 7 June 2022


  • Separation of C2 gases (C2H2/C2H4, C2H6/C2H4 and C2H2/CO2) mixtures is one of the most important and energy-demanding processes in chemical industry. Traditional separation methods (fine distillation separation and selective catalytic hydrogenation separation) have the shortages of high energy consumption and inefficient use of resources, affecting the achievement of peak carbon dioxide emissions and carbon neutrality targets. Separation based on adsorption is considered as one of the best ways to achieve low-energy separations. Therefore, it is of great importance to synthesize materials that enable the effective separation and purification of C2 gases under mild conditions. As an emerging class of porous materials, metal-organic frameworks (MOFs) show great promise in the field of gas separation and purification due to their ultra-high specific surface area, easily modifiable pore surfaces, structural designability and functionalization. Herein, we summarize recent research advances by use of MOFs sorbents for the separation and purification of C2 gases, including C2H2/C2H4, C2H6/C2H4 and C2H2/CO2. Relationship between structures and separation mechanism is also explored. Furthermore, challenges and possible research directions related to the further exploration are also discussed.
  • 加载中
    1. [1]

      Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435-437.  doi: 10.1038/532435a

    2. [2]

      Pei, J.; Shao, K.; Zhang, L.; Wen, H. M.; Li, B.; Qian, G. Current status of microporous metal-organic frameworks for hydrocarbon separations. Top. Curr. Chem. 2019, 377, 2-34.  doi: 10.1007/s41061-018-0226-z

    3. [3]

      Lin, J. Y. S. Molecular sieves for gas separation. Science 2016, 353, 121-122.  doi: 10.1126/science.aag2267

    4. [4]

      Kuznicki, S. M.; Bell, V. A.; Nair, S.; Hillhouse, H. W.; Jacubinas, R. M.; Braunbarth, C. M.; Toby, B. H.; Tsapatsis, M. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 2001, 412, 720-724.  doi: 10.1038/35089052

    5. [5]

      Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H.; Boyd, P. G.; Alavi, S.; Woo, T. K. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 2010, 330, 650-653.  doi: 10.1126/science.1194237

    6. [6]

      Ryu, U.; Jee, S.; Rao, P. C.; Shin, J.; Ko, C.; Yoon, M.; Park, K. S.; Choi, K. M. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord. Chem. Rev. 2021, 426, 213544.  doi: 10.1016/j.ccr.2020.213544

    7. [7]

      Zhang, X.; Chen, Z.; Liu, X.; Hanna, S. L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K. A historical overview of the activation and porosity of metal-organic frameworks. Chem. Soc. Rev. 2020, 49, 7406-7427.  doi: 10.1039/D0CS00997K

    8. [8]

      Lan, T.; Li, L.; Chen, Y.; Wang, X.; Yang, J.; Li, J. Opportunities and critical factors of porous metal-organic frameworks for industrial light olefins separation. Mater. Chem. Front. 2020, 4, 1954-1984.  doi: 10.1039/D0QM00186D

    9. [9]

      Lin, R. -B.; Xiang, S.; Xing, H.; Zhou, W.; Chen, B. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87-103.  doi: 10.1016/j.ccr.2017.09.027

    10. [10]

      Di, Z.; Mao, Y.; Yuan, H.; Zhou, Y.; Jin, J.; Li, C. -P. Covalent organic frameworks (COFs) for sequestration of 99TcO4-. Chem. Res. Chin. Univ. 2022, DOI: 10.1007/s40242-022-1447-9.  doi: 10.1007/s40242-022-1447-9

    11. [11]

      Ji, Z.; Di, Z.; Li, H.; Zou, S.; Wu, M.; Hong, M. A flexible Zr-MOF with dual stimulus responses to temperature and guest molecules. Inorg. Chem. Commun. 2021, 128, 108597.  doi: 10.1016/j.inoche.2021.108597

    12. [12]

      Bereciartua, P. J.; Cantín, Á.; Corma, A.; Jordá, J. L.; Palomino, M.; Rey, F.; Valencia, S.; W. C. J. E.; Kortunov, P.; Ravikovitch, P. I.; Burton, A.; Yoon, C.; Wang, Y.; Paur, C.; Guzman, J.; Bishop, A. R.; Casty, G. L. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 2017, 358, 1068-1071.  doi: 10.1126/science.aao0092

    13. [13]

      Cai, Z. W.; Sun, J.; Pan, Y. T.; Jiang, T. T.; Li, Q.; Cui, P. P.; Zhang, J. Synthesis of a rare doubly-interpenetrating zinc(II) coordination polymer for applications in photocatalysis. Chin. J. Struct. Chem. 2020, 39, 718-726.

    14. [14]

      Cui, W. G.; Hu, T. L.; Bu, X. H. Metal-organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater. 2019, 32, 1806445.

    15. [15]

      Zhao, X.; Wang, Y.; Li, D. -S.; Bu, X.; Feng, P. Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.  doi: 10.1002/adma.201705189

    16. [16]

      Griffin, S. L.; Champness, N. R. A periodic table of metal-organic frameworks. Coord. Chem. Rev. 2020, 414, 213295.  doi: 10.1016/j.ccr.2020.213295

    17. [17]

      Lin, R. -B.; Xiang, S.; Li, B.; Cui, Y.; Qian, G.; Zhou, W.; Chen, B. Our journey of developing multifunctional metal-organic frameworks. Coord. Chem. Rev. 2019, 384, 21-36.  doi: 10.1016/j.ccr.2019.01.009

    18. [18]

      Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042-3066.  doi: 10.1016/j.ccr.2009.05.019

    19. [19]

      Zhang, S.; Taylor, M. K.; Jiang, L.; Ren, H.; Zhu, G. Light hydrocarbon separations using porous organic framework materials. Chem. Eur. J. 2020, 26, 3205-3221.  doi: 10.1002/chem.201904455

    20. [20]

      Su, K.; Wang, W.; Du, S.; Ji, C.; Yuan, D. Efficient ethylene purification by a robust ethane-trapping porous organic cage. Nat. Commun. 2021, 12, 3703.  doi: 10.1038/s41467-021-24042-7

    21. [21]

      Zhang, X.; Li, L.; Wang, J. X.; Wen, H. M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z. N.; Li, B.; Qian, G.; Chen, B. Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2020, 142, 633-640.  doi: 10.1021/jacs.9b12428

    22. [22]

      Wang, W.; Su, K.; El-Sayed, E. M.; Yang, M.; Yuan, D. Solvatomorphism influence of porous organic cage on C2H2/CO2 separation. ACS Appl. Mater. Interfaces 2021, 13, 24042-24050.  doi: 10.1021/acsami.1c04573

    23. [23]

      Pang, J.; Liu, C.; Huang, Y.; Wu, M.; Jiang, F.; Yuan, D.; Hu, F.; Su, K.; Liu, G.; Hong, M. Visualizing the dynamics of temperature- and solvent-responsive soft crystals. Angew. Chem. Int. Ed. 2016, 55, 7478-7482.  doi: 10.1002/anie.201603030

    24. [24]

      Pang, J.; Jiang, F.; Wu, M.; Liu, C.; Su, K.; Lu, W.; Yuan, D.; Hong, M. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat. Commun. 2015, 6, 7575.  doi: 10.1038/ncomms8575

    25. [25]

      Pang, J.; Di, Z.; Qin, J. -S.; Yuan, S.; Lollar, C. T.; Li, J.; Zhang, P.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. -C. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis. J. Am. Chem. Soc. 2020, 142, 15020-15026.  doi: 10.1021/jacs.0c05758

    26. [26]

      Xue, H.; Li, T.; Yin, Q.; Huang, G.; Liu, T. F. A sulfonate-based metal-organic framework for the transformation of CO2 and epoxides into cyclic carbonates. Chin. J. Struct. Chem. 2020, 39, 2027-2032.

    27. [27]

      Yu, X.; Du, S.; Yang, Y.; Di, Z.; Wu, M. Two pyrene-based metalorganic frameworks for chemiluminescence. Inorg. Chem. 2021, 60, 1320-1324.  doi: 10.1021/acs.inorgchem.0c03627

    28. [28]

      Wang, X. T.; Wei, W.; Zhang, K.; Du, S. W. Detection of diethyl ether by a europium MOF through fluorescence enhancement. Chin. J. Struct. Chem. 2021, 40, 369-375.

    29. [29]

      Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.  doi: 10.1038/nenergy.2016.94

    30. [30]

      Guo, S. S.; Huang, L.; Ye, Y. X.; Liu, L. Z.; Yao, Z. Z.; Xiang, S. C.; Zhang, J. D.; Zhang, Z. J. Carbazole based anionic MOF for proton conductivity. Chin. J. Struct. Chem. 2021, 40, 55-60.

    31. [31]

      Xue, Y.; Zhu, Z.; Zhang, X.; Chen, J.; Yang, X.; Gao, X.; Zhang, S.; Luo, F.; Wang, J.; Zhao, W.; Huang, C.; Pei, X.; Wan, Q. Accelerated bone regeneration by MOF modified multifunctional membranes through enhancement of osteogenic and angiogenic performance. Adv. Healthc. Mater. 2021, 10, 2001369.  doi: 10.1002/adhm.202001369

    32. [32]

      Wang, Y.; Li, Q.; Deng, M.; Chen, K.; Wang, J. Self-assembled metal-organic frameworks nanocrystals synthesis and application for plumbagin drug delivery in acute lung injury therapy. Chin. Chem. Lett. 2022, 33, 324-327.  doi: 10.1016/j.cclet.2021.06.080

    33. [33]

      Tang, J. H.; Sun, H. Y.; Ma, W.; Feng, M. L.; Huang, X. Y. Recent progress in developing crystalline ion exchange materials for the removal of radioactive ions. Chin. J. Struct. Chem. 2020, 39, 2157-2171.

    34. [34]

      Hu, F. L.; Di, Z. Y.; Wu, M. Y.; Hong, M. C.; Li, J. A robust multifunctional Eu-6-cluster based framework for gas separation and recognition of small molecules and heavy metal ions. Cryst. Growth Des. 2019, 19, 6381-6387.  doi: 10.1021/acs.cgd.9b00866

    35. [35]

      Su, K.; Du, S.; Wang, W.; Yuan, D. Control of random self-assembly of pyrogallol[4]arene-based nanocapsule or framework. Chin. Chem. Lett. 2020, 31, 2023-2026.  doi: 10.1016/j.cclet.2019.11.047

    36. [36]

      Di, Z.; Pang, J.; Hu, F.; Wu, M.; Hong, M. An ultra-stable microporous supramolecular framework with highly selective adsorption and separation of water over ethanol. Nano. Res. 2021, 14, 2584-2588.  doi: 10.1007/s12274-020-3258-y

    37. [37]

      Qin, Y.; Wan, Y.; Guo, J.; Zhao, M. Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chin. Chem. Lett. 2022, 33, 693-702.  doi: 10.1016/j.cclet.2021.07.013

    38. [38]

      Xu, Q. -Y.; Tan, Z.; Liao, X. -W.; Wang, C. Recent advances in nanoscale metal-organic frameworks biosensors for detection of biomarkers. Chin. Chem. Lett. 2022, 33, 22-32.  doi: 10.1016/j.cclet.2021.06.015

    39. [39]

      Hu, F. L.; Di, Z. Y.; Lin, P.; Huang, P.; Wu, M. Y.; Jiang, F. L.; Hong, M. C. An anionic uranium-based metal-organic framework with ultralarge nanocages for selective dye adsorption. Cryst. Growth Des. 2018, 18, 576-580.  doi: 10.1021/acs.cgd.7b01525

    40. [40]

      Hu, F.; Di, Z.; Wu, M.; Li, J. Building a robust 3D Ca-MOF by a new square Ca4O SBU for purification of natural gas. Dalton Trans. 2020, 49, 8836-8840.  doi: 10.1039/D0DT00943A

    41. [41]

      Desai, A. V.; Sharma, S.; Let, S.; Ghosh, S. K. N-donor linker based metal-organic frameworks (MOFs): advancement and prospects as functional materials. Coord. Chem. Rev. 2019, 395, 146-192.  doi: 10.1016/j.ccr.2019.05.020

    42. [42]

      Hu, F. L.; Huang, P.; Di, Z. Y.; Wu, M. Y.; Jiang, F. L.; Hong, M. C. A robust cage-based framework for the highly selective purification of natural gas. Chem. Commun. 2019, 55, 10257-10260.  doi: 10.1039/C9CC03354H

    43. [43]

      Little, M. A.; Cooper, A. I. The chemistry of porous organic molecular materials. Adv. Funct. Mater. 2020, 30, 1909842.  doi: 10.1002/adfm.201909842

    44. [44]

      Zhu, B.; Cao, J. -W.; Mukherjee, S.; Pham, T.; Zhang, T.; Wang, T.; Jiang, X.; Forrest, K. A.; Zaworotko, M. J.; Chen, K. -J. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. J. Am. Chem. Soc. 2021, 143, 1485-1492.  doi: 10.1021/jacs.0c11247

    45. [45]

      Yang, Y.; Li, L.; Lin, R. B.; Ye, Y.; Yao, Z.; Yang, L.; Xiang, F.; Chen, S.; Zhang, Z.; Xiang, S.; Chen, B. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 2021, 13, 933.  doi: 10.1038/s41557-021-00740-z

    46. [46]

      Lyndon, R.; You, W.; Ma, Y.; Bacsa, J.; Gong, Y.; Stangland, E. E.; Walton, K. S.; Sholl, D. S.; Lively, R. P. Tuning the structures of metalorganic frameworks via a mixed-linker strategy for ethylene/ethane kinetic separation. Chem. Mater. 2020, 32, 3715-3722.  doi: 10.1021/acs.chemmater.9b04177

    47. [47]

      Zhou, P.; Yue, L.; Wang, X.; Fan, L.; Chen, D. L.; He, Y. Improving ethane/ethylene separation performance of isoreticular metal-organic frameworks via substituent engineering. ACS Appl. Mater. Interfaces 2021, 13, 54059-54068.  doi: 10.1021/acsami.1c17818

    48. [48]

      Wu, J. R.; Yang, Y. W. Synthetic macrocycle-based nonporous adaptive crystals for molecular separation. Angew. Chem. Int. Ed. 2020, 132, 2271-2275.  doi: 10.1002/ange.201911965

    49. [49]

      Wang, Q. M.; Shen, D.; B?uulow, M.; Lau, M. L.; Deng, S.; Fitch, F.; Lemcoff, N. O.; Semanscin, J. Metallo-organic molecular sieve for gas separation and purification. Micro. Meso. Mater. 2002, 55, 217-230.  doi: 10.1016/S1387-1811(02)00405-5

    50. [50]

      Bao, Z.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q.; Lu, X.; Deng, S. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework. Langmuir 2011, 27, 13554-13562.  doi: 10.1021/la2030473

    51. [51]

      Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606-1610.  doi: 10.1126/science.1217544

    52. [52]

      Lin, R. B.; Li, L.; Zhou, H. L.; Wu, H.; He, C.; Li, S.; Krishna, R.; Li, J.; Zhou, W.; Chen, B. Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater. 2018, 17, 1128-1133.  doi: 10.1038/s41563-018-0206-2

    53. [53]

      Zhang, L.; Li, L.; Hu, E.; Yang, L.; Shao, K.; Yao, L.; Jiang, K.; Cui, Y.; Yang, Y.; Li, B.; Chen, B.; Qian, G. Boosting ethylene/ethane separation within copper(I)-chelated metal-organic frameworks through tailor-made aperture and specific π-complexation. Adv. Sci. 2019, 7, 1901918.

    54. [54]

      Lei, X. W.; Yang, H.; Wang, Y.; Wang, Y.; Chen, X.; Xiao, Y.; Bu, X.; Feng, P. Tunable metal-organic frameworks based on 8-connected metal trimers for high ethane uptake. Small 2020, 17, 2003167.

    55. [55]

      Qi, D.; Zhaoqiang, Z.; Cong, Y.; Peixin, Z.; Jun, W.; Xili, C.; Chao-Hong, H.; Shuguang, D.; Huabin, X. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework. Sci. Adv. 2020, 6, 4322.  doi: 10.1126/sciadv.aaz4322

    56. [56]

      Gucuyener, C.; den, B. J. V.; Jorge, G.; Freek, K. Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 2010, 132, 17704-17706.  doi: 10.1021/ja1089765

    57. [57]

      Pires, J.; Pinto, M. L.; Saini, V. K. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption. ACS Appl. Mater. Interfaces 2014, 6, 12093-12099.  doi: 10.1021/am502686g

    58. [58]

      Pillai, R. S.; Pinto, M. L.; Pires, J.; Jorge, M.; Gomes, J. R. Understanding gas adsorption selectivity in IRMOF-8 using molecular simulation. ACS Appl. Mater. Interfaces 2015, 7, 624-637.  doi: 10.1021/am506793b

    59. [59]

      Lin, R. B.; Wu, H.; Li, L.; Tang, X. L.; Li, Z.; Gao, J.; Cui, H.; Zhou, W.; Chen, B. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 12940-12946.  doi: 10.1021/jacs.8b07563

    60. [60]

      Liao, P. Q.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 2015, 6, 8697.  doi: 10.1038/ncomms9697

    61. [61]

      Li, L.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S.; Wu, H.; Li, J.; Zhou, W.; Chen, B. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 2018, 362, 443-446.  doi: 10.1126/science.aat0586

    62. [62]

      Li, B.; Cui, X.; O'Nolan, D.; Wen, H. -M.; Jiang, M.; Krishna, R.; Wu, H.; Lin, R. -B.; Chen, Y. -S.; Yuan, D.; Xing, H.; Zhou, W.; Ren, Q.; Qian, G.; Zaworotko, M. J.; Chen, B. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 2017, 29, 1704210.  doi: 10.1002/adma.201704210

    63. [63]

      Shen, J.; He, X.; Ke, T.; Krishna, R.; van Baten, J. M.; Chen, R.; Bao, Z.; Xing, H.; Dincǎ, M.; Zhang, Z.; Yang, Q.; Ren, Q. Simultaneous interlayer and intralayer space control in two-dimensional metal-organic frameworks for acetylene/ethylene separation. Nat. Commun. 2020, 11, 6259-6259.  doi: 10.1038/s41467-020-20101-7

    64. [64]

      Pei, J.; Shao, K.; Wang, J. X.; Wen, H. M.; Yang, Y.; Cui, Y.; Krishna, R.; Li, B.; Qian, G. A chemically stable Hofmann-type metal-organic framework with sandwich-like binding sites for benchmark acetylene capture. Adv. Mater. 2020, 32, 1908275.  doi: 10.1002/adma.201908275

    65. [65]

      Jiang, K.; Zhang, L.; Xia, T.; Yang, Y.; Li, B.; Cui, Y.; Qian, G. A water-stable fcu-MOF material with exposed amino groups for the multifunctional separation of small molecules. Sci. China Mater. 2019, 62, 1315-1322.  doi: 10.1007/s40843-019-9427-5

    66. [66]

      Chai, Y.; Han, X.; Li, W.; Liu, S.; Yao, S.; Wang, C.; Shi, W.; da-Silva, I.; Manuel, P.; Cheng, Y.; Daemen, L. D.; Ramirez-Cuesta, A. J.; Tang, C. C.; Jiang, L.; Yang, S.; Guan, N.; Li, L. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 2020, 368, 1002-1006.  doi: 10.1126/science.aay8447

    67. [67]

      Xiang, S. C.; Zhang, Z.; Zhao, C. G.; Hong, K.; Zhao, X.; Ding, D. R.; Xie, M. H.; Wu, C. D.; Das, M. C.; Gill, R.; Thomas, K. M.; Chen, B. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nat. Commun. 2011, 2, 204.  doi: 10.1038/ncomms1206

    68. [68]

      Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y.; Li, B.; Ren, Q.; Zaworotko, M. J.; Chen, B. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141-144.  doi: 10.1126/science.aaf2458

    69. [69]

      Zou, S.; Di, Z.; Li, H.; Liu, Y.; Ji, Z.; Li, H.; Chen, C.; Wu, M.; Hong, M. A stable fluorinated hybrid microporous material for efficient separation of C2-C3 alkyne/alkene mixtures. Inorg. Chem. 2022, 61, 7530-7536.  doi: 10.1021/acs.inorgchem.2c00654

    70. [70]

      Li, L.; Lin, R. -B.; Krishna, R.; Wang, X.; Li, B.; Wu, H.; Li, J.; Zhou, W.; Chen, B. Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal-organic framework. J. Mater. Chem. A 2017, 5, 18984-18988.  doi: 10.1039/C7TA05598F

    71. [71]

      Wang, J.; Zhang, Y.; Zhang, P.; Hu, J.; Lin, R. B.; Deng, Q.; Zeng, Z.; Xing, H.; Deng, S.; Chen, B. Optimizing pore space for flexible-robust metal-organic framework to boost trace acetylene removal. J. Am. Chem. Soc. 2020, 142, 9744-9751.  doi: 10.1021/jacs.0c02594

    72. [72]

      Sensharma, D.; O'Hearn, D. J.; Koochaki, A.; Bezrukov, A. A.; Kumar, N.; Wilson, B. H.; Vandichel, M.; Zaworotko, M. J. The first sulfate-pillared hybrid ultramicroporous material, SOFOUR-1-Zn, and its acetylene capture properties. Angew. Chem. Int. Ed. 2021, 134, 202116145.

    73. [73]

      Zhang, Z.; Yang, Q.; Cui, X.; Yang, L.; Bao, Z.; Ren, Q.; Xing, H. Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew. Chem. Int. Ed. 2017, 56, 16282-16287.  doi: 10.1002/anie.201708769

    74. [74]

      Liu, L.; Yao, Z.; Ye, Y.; Yang, Y.; Lin, Q.; Zhang, Z.; O'Keeffe, M.; Xiang, S. Integrating the pillared-layer strategy and pore-space partition method to construct multicomponent MOFs for C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 9258-9266.  doi: 10.1021/jacs.0c00612

    75. [75]

      Fan, W.; Yuan, S.; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; Sun, D.; Zhou, H. C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728-8737.  doi: 10.1021/jacs.0c00805

    76. [76]

      Yang, H.; Trieu, T. X.; Zhao, X.; Wang, Y.; Wang, Y.; Feng, P.; Bu, X. Lock-and-key and shape-memory effects in an unconventional synthetic path to magnesium metal-organic frameworks. Angew. Chem. Int. Ed. 2019, 58, 11757-11762.  doi: 10.1002/anie.201905876

    77. [77]

      Ye, Y.; Ma, Z.; Lin, R. B.; Krishna, R.; Zhou, W.; Lin, Q.; Zhang, Z.; Xiang, S.; Chen, B. Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2019, 141, 4130-4136.  doi: 10.1021/jacs.9b00232

    78. [78]

      Yao, Q. X.; Tian, M. M.; Wang, Y.; Meng, Y. J.; Wang, J.; Yao, Q. Y.; Zhou, X.; Yang, H.; Wang, H. W.; Li, Y. W.; Zhang, J. A robust, waterstable, and multifunctional praseodymium-organic framework showing permanent porosity, CO2 adsorption properties, and selective sensing of Fe3+ ion. Chin. J. Struct. Chem. 2020, 39, 1862-1870.

    79. [79]

      Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 2005, 436, 238-241.  doi: 10.1038/nature03852

    80. [80]

      Luo, F.; Yan, C.; Dang, L.; Krishna, R.; Zhou, W.; Wu, H.; Dong, X.; Han, Y.; Hu, T. L.; O'Keeffe, M.; Wang, L.; Luo, M.; Lin, R. B.; Chen, B. UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J. Am. Chem. Soc. 2016, 138, 5678-5684.  doi: 10.1021/jacs.6b02030

    81. [81]

      Lin, R. B.; Li, L.; Wu, H.; Arman, H.; Li, B.; Lin, R. G.; Zhou, W.; Chen, B. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 2017, 139, 8022-8028.  doi: 10.1021/jacs.7b03850

    82. [82]

      Li, H.; Liu, C.; Chen, C.; Di, Z.; Yuan, D.; Pang, J.; Wei, W.; Wu, M.; Hong, M. An unprecedented pillar-cage fluorinated hybrid porous framework with highly efficient acetylene storage and separation. Angew. Chem. Int. Ed. 2021, 60, 7547-7552.  doi: 10.1002/anie.202013988

    83. [83]

      Niu, Z.; Cui, X.; Pham, T.; Verma, G.; Lan, P. C.; Shan, C.; Xing, H.; Forrest, K. A.; Suepaul, S.; Space, B.; Nafady, A.; Al-Enizi, A. M.; Ma, S. A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation. Angew. Chem. Int. Ed. 2021, 60, 5283-5288.  doi: 10.1002/anie.202016225

    84. [84]

      Di, Z.; Liu, C.; Pang, J.; Chen, C.; Hu, F.; Yuan, D.; Wu, M.; Hong, M. Cage-like porous materials with simultaneous high C2H2 storage and excellent C2H2/CO2 separation performance. Angew. Chem. Int. Ed. 2021, 60, 10828-10832.  doi: 10.1002/anie.202101907

    85. [85]

      Li, H.; Ji, Z.; Chen, C.; Di, Z.; Liu, Y.; Wu, M. A microporous metalorganic framework for efficient C2H2/CO2 and C2H6/CH4 separation. Cryst. Growth Des. 2021, 21, 2277-2282.  doi: 10.1021/acs.cgd.0c01701

    86. [86]

      Xu, T.; Jiang, Z.; Liu, P.; Chen, H.; Lan, X.; Chen, D.; Li, L.; He, Y. Immobilization of oxygen atoms in the pores of microporous metal-organic frameworks for C2H2 separation and purification. ACS Appl. Nano. Mater. 2020, 3, 2911-2919.  doi: 10.1021/acsanm.0c00162

    87. [87]

      Chen, K. -J.; Scott, H. S.; Madden, D. G.; Pham, T.; Kumar, A.; Bajpai, A.; Lusi, M.; Forrest, K. A.; Space, B.; Perry, J. J.; Zaworotko, M. J. Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem 2016, 1, 753-765.  doi: 10.1016/j.chempr.2016.10.009

    88. [88]

      Shi, Y.; Xie, Y.; Cui, H.; Ye, Y.; Wu, H.; Zhou, W.; Arman, H.; Lin, R. B.; Chen, B. Highly selective adsorption of carbon dioxide over acetylene in an ultramicroporous metal-organic framework. Adv. Mater. 2021, 33, 2105880.  doi: 10.1002/adma.202105880

    89. [89]

      Gu, Y.; Zheng, J. J.; Otake, K. I.; Shivanna, M.; Sakaki, S.; Yoshino, H.; Ohba, M.; Kawaguchi, S.; Wang, Y.; Li, F.; Kitagawa, S. Host-guest interaction modulation in porous coordination polymers for inverse selective CO2/C2H2 separation. Angew. Chem. Int. Ed. 2021, 60, 11688-11694.  doi: 10.1002/anie.202016673

    90. [90]

      Zhang, Z.; Peh, S. B.; Krishna, R.; Kang, C.; Chai, K.; Wang, Y.; Shi, D.; Zhao, D. Optimal pore chemistry in an ultramicroporous metal-organic framework for benchmark inverse CO2/C2H2 separation. Angew. Chem. Int. Ed. 2021, 60, 17198-17204.  doi: 10.1002/anie.202106769

    91. [91]

      Jiang, Z.; Fan, L.; Zhou, P.; Xu, T.; Hu, S.; Chen, J.; Chen, D. -L.; He, Y. An aromatic-rich cage-based MOF with inorganic chloride ions decorating the pore surface displaying the preferential adsorption of C2H2 and C2H6 over C2H4. Inorg. Chem. Front. 2021, 8, 1243-1252.

    92. [92]

      Fan, L.; Zhou, P.; Wang, X.; Yue, L.; Li, L.; He, Y. Rational construction and performance regulation of an In(III)-tetraisophthalate framework for one-step adsorption-phase purification of C2H4 from C2 hydrocarbons. Inorg. Chem. 2021, 60, 10819-10829.  doi: 10.1021/acs.inorgchem.1c01560

    93. [93]

      Gu, X. W.; Wang, J. X.; Wu, E.; Wu, H.; Zhou, W.; Qian, G.; Chen, B.; Li, B. Immobilization of Lewis basic sites into a stable ethane-selective MOF enabling one-step separation of ethylene from a ternary mixture. J. Am. Chem. Soc. 2022, 144, 2614-2623.  doi: 10.1021/jacs.1c10973

    94. [94]

      Wang, H. -T.; Chen, Q.; Zhang, X.; Zhao, Y. -L.; Xu, M. -M.; Lin, R. -B.; Huang, H.; Xie, L. -H.; Li, J. -R. Two isostructural metal-organic frameworks with unique nickel clusters for C2H2/C2H6/C2H4 mixture separation. J. Mater. Chem. A 2022, DOI: 10.1039/D2TA01466A.  doi: 10.1039/D2TA01466A

    95. [95]

      Chen, K. J.; Madden, D. G.; Mukherjee, S.; Pham, T.; Forrest, K. A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q. Y.; Zaworotko, M. J. Synergistic sorbent separation for one-step ethylene purification from a fourcomponent mixture. Science 2019, 366, 241-246.  doi: 10.1126/science.aax8666

    96. [96]

      Cao, J. W.; Mukherjee, S.; Pham, T.; Wang, Y.; Wang, T.; Zhang, T.; Jiang, X.; Tang, H. J.; Forrest, K. A.; Space, B.; Zaworotko, M. J.; Chen, K. J. One-step ethylene production from a four-component gas mixture by a single physisorbent. Nat. Commun. 2021, 12, 6507.  doi: 10.1038/s41467-021-26473-8

    97. [97]

      Xu, Z.; Xiong, X.; Xiong, J.; Krishna, R.; Li, L.; Fan, Y.; Luo, F.; Chen, B. A robust Th-azole framework for highly efficient purification of C2H4 from a C2H4/C2H2/C2H6 mixture. Nat. Commun. 2020, 11, 3163.  doi: 10.1038/s41467-020-16960-9

    98. [98]

      Wang, G. -D.; Li, Y. -Z.; Shi, W. -J.; Hou, L.; Wang, Y. -Y.; Zhu, Z. One-step C2H4 purification from ternary C2H6/C2H4/C2H2 mixtures by a robust metal-organic framework with customized pore environment. Angew. Chem. Int. Ed. 2022, DOI: 10.1002/anie.202205427.  doi: 10.1002/anie.202205427

  • 加载中
    1. [1]

      Jingping ZhongJian ZhouMinsi XiaoJun LiuJili ShenJuan LiuSili Ren . Design and syntheses of functionalized copper-based MOFs and its adsorption behavior for Pb(Ⅱ). Chinese Chemical Letters, 2022, 33(2): 973-978. doi: 10.1016/j.cclet.2021.07.040

    2. [2]

      LI Shi-XiongHUANG Feng-LanMO Qiao-LingLIAO Bei-Ling . Synthesis, Characterization and Photocatalytic Mechanism of Hydroxyl Modified MOFs. Chinese Journal of Inorganic Chemistry, 2020, 36(7): 1401-1412. doi: 10.11862/CJIC.2020.135

    3. [3]

      Mengjie LiuMengting PengBaoxia DongYunlei TengLigang FengQiang Xu . Explicating the Role of Metal Centers in Porphyrin-Based MOFs of PCN-222(M) for Electrochemical Reduction of CO2. Chinese Journal of Structural Chemistry, 2022, 41(7): 2207046-2207052. doi: 10.14102/j.cnki.0254-5861.2022-0057

    4. [4]

      Miao WuLingling XiaYucen LiDifeng YinJianping YuWenbo LiNing WangXin LiJiwei CuiWei ChuYa ChengMing Hu . Automated and remote synthesis of poly(ethylene glycol)-mineralized ZIF-8 composite particles via a synthesizer assisted by femtosecond laser micromachining. Chinese Chemical Letters, 2022, 33(1): 497-500. doi: 10.1016/j.cclet.2021.07.004

    5. [5]

      CHEN YingZHANG QiLIANG Hong-baoTIAN Gong-weiLI Jing . Preparation and properties of dibenzothiophene molecularly imprinted functionalized MOF199 adsorbent. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1130-1136.

    6. [6]

      Qian WenhaoHuang WeiYufeng Cong . Aerobic Oxidation of Benzyl Alcohol catalyzed by CuBTC. Chemistry, 2019, 82(6): 555-558.

    7. [7]

      Tang ZihuanZhang CaishunZhang LeiLiu Daosheng . Progress in MOFs Materials Containing BODIPY Unit. Chemistry, 2019, 82(9): 796-800.

    8. [8]

      Xiang Yang Aijuan Han Junfeng Liu . 笑傲江湖之金属有机骨架材料. University Chemistry, 2021, 36(10): 2107086-0. doi: 10.3866/PKU.DXHX202107086

    9. [9]

      Weifan ZhangLei WangGuochun DingYuejia YangGuang YangJing XuNingning XuLingling XieQing HanLimin ZhuXiaoyu CaoJianmin Ma . Bimetallic CoNiSe2/C nanosphere anodes derived from Ni-Co-metal-organic framework precursor towards higher lithium storage capacity. Chinese Chemical Letters, 2023, 34(2): 107328-1-107328-8. doi: 10.1016/j.cclet.2022.03.051

    10. [10]

      Lisha ChenQianqian TangShihao WuLongshuai ZhangLifang FengYuan WangYiling XieYan LiJian-Ping ZouSheng-Lian Luo . Covalent coupling promoting charge transport of CdSeTe/UiO-66 for boosting photocatalytic CO2 reduction. Chinese Chemical Letters, 2023, 34(6): 107903-1-107903-4. doi: 10.1016/j.cclet.2022.107903

    11. [11]

      Yue QiuJin-Jin LiLing ZhaoZhenhao XiWeikang Yuan . Porous Metal-Organic Framework-Polymer Composites Using High Internal Phase Emulsion Templates: A Review. Chinese Journal of Structural Chemistry, 2022, 41(12): 2212060-2212069. doi: 10.14102/j.cnki.0254-5861.2022-0179

    12. [12]

      Zhang HeLi GuoliangZhang KegangLiao Chunyang . Advances of Metal-Organic Frameworks in Adsorption and Separation Applications. Acta Chimica Sinica, 2017, 75(9): 841-859. doi: 10.6023/A17040168

    13. [13]

      WANG Peng-FeiWANG Li-Jun . Zn-Based MOF Containing Rod-Shaped Metal-Carboxylate/Hydroxyl SBU Exhibiting Afterglow Property at Low Temperature. Chinese Journal of Inorganic Chemistry, 2018, 34(12): 2254-2260. doi: 10.11862/CJIC.2018.246

    14. [14]

      XU Meng-YingSONG Gan-LinHAN Bao-Hang . Postsynthetic Modification of UiO-66 with Perfluoroalkyl for Adsorbing Organic Pollutants. Chinese Journal of Inorganic Chemistry, 2019, 35(11): 2136-2144. doi: 10.11862/CJIC.2019.247

    15. [15]

      Mu FeihuDai BenlinZhao WeiZhang LiliXu JimingGuo Xujing . A review on metal-organic frameworks for photoelectrocatalytic applications. Chinese Chemical Letters, 2020, 31(7): 1773-1781. doi: 10.1016/j.cclet.2019.12.015

    16. [16]

      Ying-Ying ZHANGFei-Fei ZHANGLei MALi WANGJiang-Feng YANG . Control of High Stability CAU-10-X (X=H, NO2, CH3) Pore Chemical Environment for Efficient Capture of N2O. Chinese Journal of Inorganic Chemistry, 2022, 38(11): 2213-2221. doi: 10.11862/CJIC.2022.225

    17. [17]

      Jingyang LiYing HeYongcun ZouYan YanZhiguang SongXiaodong Shi . Achieving a stable COF with the combination of "flat" and "twist" large-size rigid synthons for selective gas adsorption and separation. Chinese Chemical Letters, 2022, 33(6): 3017-3020. doi: 10.1016/j.cclet.2021.12.011

    18. [18]

      Gao-Peng LIZhen-Zhen LIHong-Fang XIEYun-Long FUYao-Yu WANG . Efficient C2 Hydrocarbons and CO2 Adsorption and Separation in a Multi-site Functionalized MOF. Chinese Journal of Structural Chemistry, 2021, 40(8): 1047-1054. doi: 10.14102/j.cnki.0254–5861.2011–3094

    19. [19]

      Dandan Cai Changping Ruan Jianhua Qiu Liyun Wu Cong Zhang Yuzhen Zhang . Synthesis of Magnetic Co/C Nanocomposite and Its Adsorption Performance for Congo Red in Aqueous Systems. University Chemistry, 2020, 35(12): 212-220. doi: 10.3866/PKU.DXHX201911005

    20. [20]

      Rong Chun XIONG Xiao Dong LEI Gang WEI . Controlling Pore Size and its Distribution of γ-Al2O3 Nanofiltration Membranes. Chinese Chemical Letters, 2003, 14(9): 969-972.

  • PDF Downloads(8)
  • Abstract views(364)
  • HTML views(28)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint