Citation: Sijia Liu, Minghao Liu, Qing Xu, Gaofeng Zeng. Lithium Ion Conduction in Covalent Organic Frameworks[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 2211003-2211017. doi: 10.14102/j.cnki.0254-5861.2022-0114 shu

Lithium Ion Conduction in Covalent Organic Frameworks





  • Author Bio: Sijia Liu received her BE degree in chemistry from Zhengzhou University in 2020. She is currently pursuing her MS degree in physical chemistry at the ShanghaiTech University, and under the supervision of Professor Qing Xu and Gaofeng Zeng at the Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS). Her current research focuses on the design and synthesis of COFs for electrocatalysis and batteries
    Minghao Liu was born in 1996. He received his master's degree in 2020 from University College London. He is a PhD student in environmental engineering under the supervision of Professor Gaofeng Zeng and Qing Xu at Shanghai Advanced Research Institute, Chinese Academy of Science (CAS). His current research interests involve the design and synthesis of COFs and metal organic frameworks (MOFs) for electrocatalysis and batteries
    Qing Xu received his MS degree in 2015 from Shanghai Jiao Tong University and PhD degree in 2018 from the Institute of Molecular Science (IMS), the Graduate University for Advanced Studies (SOKENDAI). He is an associate professor in Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS). His research interests focus on the synthesis and functionalization of porous polymers
    Prof. Gaofeng Zeng received his BS in Chemical Engineering from Dalian University of Technology (DUT) and PhD in Industrial Catalysis from Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP). Prior to Shanghai Advanced Research Institute, Chinese Academy of Sciences (SARI), he worked as a post-doc fellow at King Abdullah University of Science and Technology (KAUST) for three years. Currently, he is a professor and group leader at SARI and his research activities cover the synthesis of advanced porous/membrane materials and the corresponding applications in separations and reactions. He has >80 refereed journal articles and > 30 patents
  • Corresponding author: Qing Xu, xuqing@sari.ac.cn Gaofeng Zeng, zenggf@sari.ac.cn
  • Received Date: 8 May 2022
    Accepted Date: 17 May 2022
    Available Online: 23 May 2022

Figures(12)

  • Ion conduction plays key roles in electrochemical systems, including fuel cells, lithium ion batteries, and metal-air batteries. Covalent organic frameworks (COFs), as a new class of porous polymers, constructed by pre-designable building blocks, are ideal hosts to accommodate ionic carries for conduction because of their straightforward pore channels, tunable pore size, controllable pore environment, and good chemical and thermal stability. Different from proton conduction, how to achieve high lithium ion conduction is still a challenge as it is difficult to dissociate ionic bonds of the lithium salts. To facilitate the dissociation of lithium salts, COFs with different pores and skeletons are well designed and constructed. This review focuses on emerging developments of lithium ion conduction in COFs, and discusses the structures of these COFs and conductive performance to elucidate the structure-property correlations. Furthermore, we have concluded the remaining challenge and future direction in these COF-based lithium conductive areas. This review provides deeper insight into COFs for ionic conduction.
  • 加载中
    1. [1]

      Cao, Y. ; Wang, M. ; Wang, H. ; Han, C. ; Pan, F. ; Sun, J. Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 2022, 2200057.

    2. [2]

      Zhao, X. ; Pachfule, P. ; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871-6913.  doi: 10.1039/D0CS01569E

    3. [3]

      Jiang, X. ; Chen, Y. ; Lu, C. Bio-inspired materials for photocatalytic hydrogen production. Chin. J. Struct. Chem. 2021, 39, 2123-2130.

    4. [4]

      Park, S. ; Liao, Z. ; Ibarlucea, B. ; Qi, H. ; Lin, H. H. ; Becker, D. ; Melidonie, J. ; Zhang, T. ; Sahabudeen, H. ; Baraban, L. ; Baek, C. K. ; Zheng, Z. ; Zschech, E. ; Fery, A. ; Heine, T. ; Kaiser, U. ; Cuniberti, G. ; Dong, R. ; Feng, X. Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 2020, 59, 8218-8224.  doi: 10.1002/anie.201916595

    5. [5]

      Evans, A. M. ; Bradshaw, N. P. ; Litchfield, B. ; Strauss, M. J. ; Seckman, B. ; Ryder, M. R. ; Castano, I. ; Gilmore, C. ; Gianneschi, N. C. ; Mulzer, C. R. ; Hersam, M. C. ; Dichtel, W. R. High-sensitivity acoustic molecular sensors based on large-area, spray-coated 2D covalent organic frameworks. Adv. Mater. 2020, 32, e2004205.  doi: 10.1002/adma.202004205

    6. [6]

      Yusran, Y. ; Fang, Q. ; Valtchev, V. Electroactive covalent organic frameworks: design, synthesis, and applications. Adv. Mater. 2020, 32, e2002038.  doi: 10.1002/adma.202002038

    7. [7]

      Jin, S. ; Allam, O. ; Jang, S. S. ; Lee, S. W. Covalent organic frameworks: design and applications in electrochemical energy storage devices. InfoMat. 2022.

    8. [8]

      Alahakoon, S. B. ; Diwakara, S. D. ; Thompson, C. M. ; Smaldone, R. A. Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 1344-1356.  doi: 10.1039/C9CS00884E

    9. [9]

      Guan, X. ; Chen, F. ; Fang, Q. ; Qiu, S. Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 1357-1384.  doi: 10.1039/C9CS00911F

    10. [10]

      Geng, P. ; Wang, L. ; Du, M. ; Bai, Y. ; Li, W. ; Liu, Y. ; Chen, S. ; Braunstein, P. ; Xu, Q. ; Pang, H. MIL-96-Al for Li-S batteries: shape or size? Adv. Mater. 2022, 34, e2107836.  doi: 10.1002/adma.202107836

    11. [11]

      Li, W. ; Guo, X. ; Geng, P. ; Du, M. ; Jing, Q. ; Chen, X. ; Zhang, G. ; Li, H. ; Xu, Q. ; Braunstein, P. ; Pang, H. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 2021, 33, e2105163.  doi: 10.1002/adma.202105163

    12. [12]

      Geng, P. ; Du, M. ; Guo, X. ; Pang, H. ; Tian, Z. ; Braunstein, P. ; Xu, Q. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries. Energy Environ. Mater. 2021, 5, 599-607.

    13. [13]

      Shan, Y. ; Li, Y. ; Pang, H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001298.  doi: 10.1002/adfm.202001298

    14. [14]

      Ke, S. W. ; Wang, Y. ; Su, J. ; Liao, K. ; Lv, S. ; Song, X. ; Ma, T. ; Yuan, S. ; Jin, Z. ; Zuo, J. L. Redox-active covalent organic frameworks with nickel-bis(dithiolene) units as guiding layers for high-performance lithium metal batteries. J. Am. Chem. Soc. 2022, 144, 8267-8277.  doi: 10.1021/jacs.2c01996

    15. [15]

      Emmerling, S. T. ; Schuldt, R. ; Bette, S. ; Yao, L. ; Dinnebier, R. E. ; Kastner, J. ; Lotsch, B. V. Interlayer interactions as design tool for large-pore COFs. J. Am. Chem. Soc. 2021, 143, 15711-15722.  doi: 10.1021/jacs.1c06518

    16. [16]

      Zhang, F. ; Hao, H. ; Dong, X. ; Li, X. ; Lang, X. Olefin-linked covalent organic framework nanotubes based on triazine for selective oxidation of sulfides with O2 powered by blue light. Appl. Catal. B Environ. 2022, 305, 121027.  doi: 10.1016/j.apcatb.2021.121027

    17. [17]

      Li, X. ; Hou, Q. ; Huang, W. ; Xu, H. ; Wang, X. ; Yu, W. ; Li, R. ; Zhang, K. ; Wang, L. ; Chen, Z. ; Xie, K. ; Loh, K. P. Solution-processable covalent organic framework electrolytes for all-solid-state Li-organic batteries. ACS Energy Lett. 2020, 5, 3498-506.  doi: 10.1021/acsenergylett.0c01889

    18. [18]

      Liu, R. ; Tan, K. T. ; Gong, Y. ; Chen, Y. ; Li, Z. ; Xie, S. ; He, T. ; Lu, Z. ; Yang, H. ; Jiang, D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120-242.  doi: 10.1039/D0CS00620C

    19. [19]

      Li, X. ; Yadav, P. ; Loh, K. P. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks-from 3D solids to 2D sheets. Chem. Soc. Rev. 2020, 49, 4835-4866.  doi: 10.1039/D0CS00236D

    20. [20]

      Liang, R. R. ; Jiang, S. Y. ; Ru-Han, A. ; Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 2020, 49, 3920-3951.  doi: 10.1039/D0CS00049C

    21. [21]

      Chen, R. ; Shi, J. L. ; Ma, Y. ; Lin, G. ; Lang, X. ; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 6430-6434.  doi: 10.1002/anie.201902543

    22. [22]

      Meng, Y. ; Luo, Y. ; Shi, J. L. ; Ding, H; Lang, X. ; Chen, W. ; Zheng, A. ; Sun, J. ; Wang, C. 2D and 3D porphyrinic covalent organic frameworks: the influence of dimensionality on functionality. Angew. Chem. Int. Ed. 2020, 59, 3624-3629.  doi: 10.1002/anie.201913091

    23. [23]

      Jin, F. ; Nguyen, H. L. ; Zhong, Z. ; Han, X. ; Zhu, C. ; Pei, X. ; Ma, Y. ; Yaghi, O. M. Entanglement of square nets in covalent organic frameworks. J. Am. Chem. Soc. 2022, 144, 1539-1544.  doi: 10.1021/jacs.1c13468

    24. [24]

      Li, Z. ; Huang, N. ; Lee, K. H. ; Feng, Y. ; Tao, S. ; Jiang, Q. ; Nagao, Y. ; Irle, S. ; Jiang, D. Light-emitting covalent organic frameworks: fluorescence improving via pinpoint surgery and selective switch-on sensing of anions. J. Am. Chem. Soc. 2018, 140, 12374-12377.  doi: 10.1021/jacs.8b08380

    25. [25]

      Wang, X. ; Han, X. ; Cheng, C. ; Kang, X. ; Liu, Y. ; Cui, Y. 2D covalent organic frameworks with cem topology. J. Am. Chem. Soc. 2022, 144, 7366-7373.  doi: 10.1021/jacs.2c01082

    26. [26]

      Wang, W. ; Zhao, W. ; Xu, H. ; Liu, S. ; Huang, W. ; Zhao, Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord. Chem. Rev. 2021, 429, 213616.  doi: 10.1016/j.ccr.2020.213616

    27. [27]

      Mahato, M. ; Tabassian, R. ; Nguyen, V. H. ; Oh, S. ; Nam, S. ; Kim, K. J. ; Oh, I. sulfur- and nitrogen-rich porous π-conjugated COFs as stable electrode materials for electro-ionic soft actuators. Adv. Funct. Mater. 2020, 30, 2003863.  doi: 10.1002/adfm.202003863

    28. [28]

      Leith, G. A. ; Martin, C. R. ; Mayers, J. M. ; Kittikhunnatham, P. ; Larsen, R. W. ; Shustova, N. B. Confinement-guided photophysics in MOFs, COFs, and cages. Chem. Soc. Rev. 2021, 50, 4382-4410.  doi: 10.1039/D0CS01519A

    29. [29]

      Hao, Q. ; Zhao, C. ; Sun, B. ; Lu, C. ; Liu, J. ; Liu, M. ; Wan, L. J. ; Wang, D. Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 2018, 140, 12152-12158.  doi: 10.1021/jacs.8b07120

    30. [30]

      Ascherl, L. ; Evans, E. W. ; Gorman, J. ; Orsborne, S. ; Bessinger, D. ; Bein, T. ; Friend, R. H. ; Auras, F. Perylene-based covalent organic frameworks for acid vapor sensing. J. Am. Chem. Soc. 2019, 141, 15693-15699.  doi: 10.1021/jacs.9b08079

    31. [31]

      Ying, Y. ; Tong, M. ; Ning, S. ; Ravi, S. K. ; Peh, S. B. ; Tan, S. C. ; Pennycook, S. J. ; Zhao, D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 2020, 142, 4472-4480.  doi: 10.1021/jacs.9b13825

    32. [32]

      Ying, Y. ; Peh, S. B. ; Yang, H. ; Yang, Z. ; Zhao, D. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Adv. Mater. 2021, e2104946.

    33. [33]

      Wang, P. ; Peng, Y. ; Zhu, C. ; Yao, R. ; Song, H. ; Kun, L. ; Yang, W. Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2 -selective separation. Angew. Chem. Int. Ed. 2021, 60, 19047-19052.  doi: 10.1002/anie.202106346

    34. [34]

      Wang, Y. ; Zhao, X. ; Yang, H. ; Bu, X. ; Wang, Y. ; Jia, X. ; Li, J. ; Feng, P. A tale of two trimers from two different worlds: a COF-inspired synthetic strategy for pore-space partitioning of MOFs. Angew. Chem. Int. Ed. 2019, 58, 6316-6320.  doi: 10.1002/anie.201901343

    35. [35]

      Yuan, C. ; Jia, W. ; Yu, Z. ; Li, Y. ; Zi, M. ; Yuan, L. M. ; Cui, Y. Are highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic separations? J. Am. Chem. Soc. 2022, 144, 891-900.  doi: 10.1021/jacs.1c11051

    36. [36]

      Fu, Y. ; Wu, Y. ; Chen, S. ; Zhang, W. ; Zhang, Y. ; Yan, T. ; Yang, B. ; Ma, H. Zwitterionic covalent organic frameworks: attractive porous host for gas separation and anhydrous proton conduction. ACS Nano. 2021, 15, 19743-19755.  doi: 10.1021/acsnano.1c07178

    37. [37]

      Shevate, R. ; Shaffer, D. L. Large-area 2D covalent organic framework membranes with tunable single-digit nanopores for predictable mass transport. ACS Nano. 2022, 16, 2407-2418.  doi: 10.1021/acsnano.1c08804

    38. [38]

      Ding, C. ; Breunig, M. ; Timm, J. ; Marschall, R. ; Senker, J. ; Agarwal, S. Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Adv. Funct. Mater. 2021, 31, 2106507.  doi: 10.1002/adfm.202106507

    39. [39]

      Liu, Y. ; Wu, H. ; Li, R. ; Wang, J. ; Kong, Y. ; Guo, Z. ; Jiang, H. ; Ren, Y. ; Pu, Y. ; Liang, X. ; Pan, F. ; Cao, Y. ; Song, S. ; He, G. ; Jiang, Z. MOF-COF "alloy" membrane for efficient propylene/propane separation. Adv. Mater. 2022, e2201423.

    40. [40]

      Gong, Y. N. ; Zhong, W. ; Li, Y. ; Qiu, Y. ; Zheng, L. ; Jiang, J. ; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723-16731.  doi: 10.1021/jacs.0c07206

    41. [41]

      Shi, J. L. ; Chen, R. ; Hao, H. ; Wang, C. ; Lang, X. 2D sp2 carbonconjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew. Chem. Int. Ed. 2020, 59, 9088-9093.  doi: 10.1002/anie.202000723

    42. [42]

      Li, X. ; Yang, S. ; Zhang, F. ; Zheng, L. ; Lang, X. Facile synthesis of 2D covalent organic frameworks for cooperative photocatalysis with TEMPO: the selective aerobic oxidation of benzyl amines. Appl. Catal. B Environ. 2022, 303, 120846.  doi: 10.1016/j.apcatb.2021.120846

    43. [43]

      Bhunia, S. ; Deo, K. A. ; Gaharwar, A. K. 2D Covalent organic frameworks for biomedical applications. Adv. Funct. Mater. 2020, 30, 2002046.  doi: 10.1002/adfm.202002046

    44. [44]

      Li, L. ; Yun, Q. ; Zhu, C. ; Sheng, G. ; Guo, J. ; Chen, B. ; Zhao, M. ; Zhang, Z. ; Lai, Z. ; Zhang, X. ; Peng, Y. ; Zhu, Y. ; Zhang, H. Isoreticular series of two-dimensional covalent organic frameworks with the kgd topology and controllable micropores. J. Am. Chem. Soc. 2022, 144, 6475-6482.  doi: 10.1021/jacs.2c01199

    45. [45]

      Peng, H. ; Huang, S. ; Tranca, D. ; Richard, F. ; Baaziz, W. ; Zhuang, X. ; Samori, P. ; Ciesielski, A. Quantum capacitance through molecular infiltration of 7, 7, 8, 8-tetracyanoquinodimethane in metal-organic framework/covalent organic framework hybrids. ACS Nano. 2021, 15, 18580-18589.  doi: 10.1021/acsnano.1c09146

    46. [46]

      Nguyen, H. L. ; Hanikel, N. ; Lyle, S. J. ; Zhu, C. ; Proserpio, D. M. ; Yaghi, O. M. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J. Am. Chem. Soc. 2020, 142, 2218-2221.  doi: 10.1021/jacs.9b13094

    47. [47]

      Lu, M. ; Zhang, M. ; Liu, C. G. ; Liu, J. ; Shang, L. J. ; Wang, M. ; Chang, J. N. ; Li, S. L. ; Lan, Y. Q. Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. En. 2021, 60, 4864-4871.  doi: 10.1002/anie.202011722

    48. [48]

      Chen, H. ; Liu, W. ; Laemont, A. ; Krishnaraj, C. ; Feng, X. ; Rohman, F. ; Meledina, M. ; Zhang, Q. ; Van Deun, R. Leus, K. ; Van Der Voort, P. A visible-light-harvesting covalent organic framework bearing single nickel sites as a highly efficient sulfur-carbon cross-coupling dual catalyst. Angew. Chem. Int. Ed. 2021, 60, 10820-10827.  doi: 10.1002/anie.202101036

    49. [49]

      Han, B. ; Jin, Y. ; Chen, B. ; Zhou, W. ; Yu, B. ; Wei, C. ; Wang, H. ; Wang, K. ; Chen, Y. ; Chen, B. ; Jiang, J. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202114244.

    50. [50]

      Sasmal, H. S. ; Bag, S. ; Chandra, B. ; Majumder, P. ; Kuiry, H. ; Karak, S. ; Sen Gupta, S. ; Banerjee, R. Heterogeneous C-H functionalization in water via porous covalent organic framework nanofilms: a case of catalytic sphere transmutation. J. Am. Chem. Soc. 2021, 143, 8426-8436.  doi: 10.1021/jacs.1c02425

    51. [51]

      Liu, L. ; Yin, L. ; Cheng, D. ; Zhao, S. ; Zang, H. Y. ; Zhang, N. ; Zhu, G. Surface-mediated construction of an ultrathin free-standing covalent organic framework membrane for efficient proton conduction. Angew. Chem. Int. Ed. 2021, 60, 14875-14880.  doi: 10.1002/anie.202104106

    52. [52]

      Yang, C. ; Hou, L. ; Yao, Z. ; Zhao, J. ; Hou, L. ; Zhang, L. High proton selectivity membrane based on the keto-linked cationic covalent organic framework for acid recovery. J. Membr. Sci. 2021, 640, 119800.  doi: 10.1016/j.memsci.2021.119800

    53. [53]

      Fan, C. ; Wu, H. ; Guan, J. ; You, X. ; Yang, C. ; Wang, X. ; Cao, L. ; Shi, B. ; Peng, Q. ; Kong, Y. ; Wu, Y. ; Khan, N. A. ; Jiang, Z. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem. Int. Ed. 2021, 60, 18051-18058.  doi: 10.1002/anie.202102965

    54. [54]

      Sahoo, R. ; Mondal, S. ; Pal, S. C. ; Mukherjee, D. ; Das, M. C. Covalent-organic frameworks (COFs) as proton conductors. Adv. Energy Mater. 2021, 11, 2102300.  doi: 10.1002/aenm.202102300

    55. [55]

      Wang, Z. ; Yang, Y. ; Zhao, Z. ; Zhang, P. ; Zhang, Y. ; Liu, J. ; Ma, S. ; Cheng, P. ; Chen, Y. ; Zhang, Z. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat. Commun. 2021, 12, 1982.  doi: 10.1038/s41467-021-22288-9

    56. [56]

      Wang, X. ; Shi, B. ; Yang, H. ; Guan, J. ; Liang, X. ; Fan, C. ; You, X. ; Wang, Y. ; Zhang, Z. ; Wu, H. ; Cheng, T. ; Zhang, R. ; Jiang, Z. Assembling covalent organic framework membranes with superior ion exchange capacity. Nat. Commun. 2022, 13, 1020.  doi: 10.1038/s41467-022-28643-8

    57. [57]

      Wu, M. ; Zhao, Y. ; Zhao, R. ; Zhu, J. ; Liu, J. ; Zhang, Y. ; Li, C. ; Ma, Y. ; Zhang, H. ; Chen, Y. Chemical design for both molecular and morphology optimization toward high-performance lithium-ion batteries cathode material based on covalent organic framework. Adv. Funct. Mater. 2021, 32, 2107703.

    58. [58]

      Zhao, G. ; Li, H. ; Gao, Z. ; Xu, L. ; Mei, Z. ; Cai, S. ; Liu, T. ; Yang, X. ; Guo, H. ; Sun, X. Dual-active-center of polyimide and triazine modified atomic-layer covalent organic frameworks for high-performance li storage. Adv. Funct. Mater. 2021, 31, 2101019.  doi: 10.1002/adfm.202101019

    59. [59]

      Fu, W. ; Zhang, M. ; Sheng, Z. Mesh-liked carbon nanosheets intercalated into layered TiO2 as a zero-strain anode for lithium-ion storage. Chin. J. Struct. Chem. 2021, 40, 797-805.

    60. [60]

      Zhao, G. ; Xu, L. ; Jiang, J. ; Mei, Z. ; An, Q. ; Lv, P. ; Yang, X. ; Guo, H. ; Sun, X. COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Nano Energy 2022, 92, 106756.  doi: 10.1016/j.nanoen.2021.106756

    61. [61]

      Kong, L. ; Liu, M. ; Huang, H. ; Xu, Y. ; Bu, X. Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv. Energy Mater. 2021, 12, 2100172.

    62. [62]

      Gu, S. ; Wu, S. ; Cao, L. ; Li, M. ; Qin, N. ; Zhu, J. ; Wang, Z. ; Li, Y. ; Li, Z. ; Chen, J. ; Lu, Z. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 2019, 141, 9623-9628.  doi: 10.1021/jacs.9b03467

    63. [63]

      Chen, X. ; Zhang, H. ; Ci, C. ; Sun, W. ; Wang, Y. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance k-organic batteries. ACS Nano. 2019, 13, 3600-3607.  doi: 10.1021/acsnano.9b00165

    64. [64]

      Zhang, W. ; Ming, J. ; Zhao, W. ; Dong, X. ; Hedhili, M. N. ; Costa, P. M. F. J. ; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.  doi: 10.1002/adfm.201903641

    65. [65]

      Wu, X. ; Chen, Y. ; Xing, Z. ; Lam, C. W. K. ; Pang, S. ; Zhang, W. ; Ju, Z. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.  doi: 10.1002/aenm.201900343

    66. [66]

      Fan, L. ; Ma, R. ; Zhang, Q. ; Jia, X. ; Lu, B. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 2019, 58, 10500-10505.  doi: 10.1002/anie.201904258

    67. [67]

      Hu, X. ; Jian, J. ; Fang, Z. ; Zhong, L. ; Yuan, Z. ; Yang, M. ; Ren, S. ; Zhang, Q. ; Chen, X. ; Yu, D. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 2019, 22, 40-47.  doi: 10.1016/j.ensm.2018.12.021

    68. [68]

      Yang, Z. ; Peng, C. ; Meng, R. ; Zu, L. ; Feng, Y. ; Chen, B. ; Mi, Y. ; Zhang, C. ; Yang, J. Hybrid anatase/rutile nanodots-embedded covalent organic frameworks with complementary polysulfide adsorption for highperformance lithium-sulfur batteries. ACS Cent. Sci. 2019, 5, 1876-1883.  doi: 10.1021/acscentsci.9b00846

    69. [69]

      Meng, Y. ; Lin, G. ; Ding, H. ; Liao, H. ; Wang, C. Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 17186-17191.  doi: 10.1039/C8TA05508D

    70. [70]

      Duan, H. ; Li, K. ; Xie, M. ; Chen, J. M. ; Zhou, H. G. ; Wu, X. ; Ning, G. H. ; Cooper, A. I. ; Li, D. Scalable synthesis of ultrathin polyimide covalent organic framework nanosheets for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19446-19453.  doi: 10.1021/jacs.1c08675

    71. [71]

      Yusran, Y. ; Li, H. ; Guan, X. ; Li, D. ; Tang, L. ; Xue, M. ; Zhuang, Z. ; Yan, Y. ; Valtchev, V. ; Qiu, S. ; Fang, Q. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, e1907289.  doi: 10.1002/adma.201907289

    72. [72]

      Lee, M. K. ; Shokouhimehr, M. ; Kim, S. Y. ; Jang, H. W. Two-dimensional metal-organic frameworks and covalent-organic frameworks for electrocatalysis: distinct merits by the reduced dimension. Adv. Energy Mater. 2021, 12, 2003990.

    73. [73]

      Cui, X. ; Gao, L. ; Ma, R. ; Wei, Z. ; Lu, C. ; Li, Z. ; Yang, Y. Pyrolysisfree covalent organic framework-based materials for efficient oxygen electrocatalysis. J. Mater. Chem. A 2021, 9, 20985-21004.  doi: 10.1039/D1TA02795F

    74. [74]

      Hu, T. ; Wang, Y. ; Xiao, H. ; Chen, W. ; Zhao, M. ; Jia, J. Shape-control of super-branched Pd-Cu alloys with enhanced electrocatalytic performance for ethylene glycol oxidation. Chem. Commun. 2018, 54, 13363-13366.  doi: 10.1039/C8CC06901H

    75. [75]

      Yuan, D. ; Dou, Y. ; Wu, Z. ; Tian, Y. ; Ye, K. H. ; Lin, Z. ; Dou, S. X. ; Zhang, S. Atomically thin materials for next-generation rechargeable batteries. Chem. Rev. 2022, 122, 957-999.  doi: 10.1021/acs.chemrev.1c00636

    76. [76]

      Cheng, Z. ; Xie, M. ; Mao, Y. ; Ou, J. ; Zhang, S. ; Z. ; Li, J. ; Fu, F. ; Wu, J. ; Shen, Y. ; Lu, D. ; Chen, H. Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors. Adv. Energy Mater. 2020, 10, 1904230.  doi: 10.1002/aenm.201904230

    77. [77]

      Chen, D. ; Huang, S. ; Zhong, L. ; Wang, S. ; Xiao, M. ; Han, D. ; Meng, Y. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting li dendrite puncture. Adv. Funct. Mater. 2019, 30, 1907717.

    78. [78]

      Ren, Y. ; Hortance, N. ; McBride, J. ; Hatzell, K. B. Sodium-sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte. ACS Energy Lett. 2020, 6, 345-353.

    79. [79]

      Lau, J. ; DeBlock, R. H. ; Butts, D. M. ; Ashby, D. S. ; Choi, C. S. ; Dunn, B. S. Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 2018, 8, 1800933.  doi: 10.1002/aenm.201800933

    80. [80]

      Schwietert, T. K. ; Arszelewska, V. A. ; Wang, C. ; Yu, C. ; Vasileiadis, A. ; De Klerk, N. J. J. ; Hageman, J. ; Hupfer, T. ; Kerkamm, I. ; Xu, Y. ; Van der Maas, E. ; Kelder, E. M. ; Ganapathy, S. ; Wagemaker, M. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 2020, 19, 428-435.  doi: 10.1038/s41563-019-0576-0

    81. [81]

      Zaman, W. ; Hortance, N. ; Dixit, M. B. ; De Andrade, V. ; Hatzell, K. B. Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries. J. Mater. Chem. A 2019, 7, 23914-23921.  doi: 10.1039/C9TA05118J

    82. [82]

      Xi, G. ; Xiao, M. ; Wang, S. ; Han, D. ; Li, Y. ; Meng, Y. Polymer-based solid electrolytes: material selection, design, and application. Adv. Funct. Mater. 2020, 31, 2007598.

    83. [83]

      Pan, K. ; Zhang, L. ; Qian, W. ; Wu, X. ; Dong, K. ; Zhang, H. ; Zhang, S. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, e2000399.  doi: 10.1002/adma.202000399

    84. [84]

      Sen, S. ; Trevisanello, E. ; Niemöller, E. ; Shi, B. ; Simon, F. J. ; Richter, F. H. The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. J. Mater. Chem. A 2021, 9, 18701-18732.  doi: 10.1039/D1TA02796D

    85. [85]

      Ye, T. ; Li, L. ; Zhang, Y. Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 2020, 30, 2000077.  doi: 10.1002/adfm.202000077

    86. [86]

      Lian, P. ; Zhao, B. ; Zhang, L. ; Xu, N. ; Wu, M. ; Gao, X. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 2019, 7, 20540-20557.  doi: 10.1039/C9TA04555D

    87. [87]

      Vazquez-Molina, D. A. ; Mohammad-Pour, G. S. ; Lee, C. ; Logan, M. W. ; Duan, X. ; Harper, J. K. ; Uribe-Romo, F. J. Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity. J. Am. Chem. Soc. 2016, 138, 9767-9770.  doi: 10.1021/jacs.6b05568

    88. [88]

      Xie, Z. ; Wang, B. ; Yang, Z. ; Yang, X. ; Yu, X. ; Xing, G. ; Zhang, Y. ; Chen, L. Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction. Angew. Chem. Int. Ed. 2019, 58, 15742-15746.  doi: 10.1002/anie.201909554

    89. [89]

      Guo, Z. ; Zhang, Y. ; Dong, Y. ; Li, J. ; Li, S. ; Shao, P. ; Feng, X. ; Wang, B. Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 1923-1927.  doi: 10.1021/jacs.8b13551

    90. [90]

      Liu, Z. ; Zhang, K. ; Huang, G. ; Bian, S. ; Huang, Y. ; Jiang, X. ; Pan, Y. ; Wang, Y. ; Xia, X. ; Xu, B. ; Zhang, G. Lithium-ion transport in covalent organic framework membrane. Chem. Eng. J. 2022, 433, 133550.  doi: 10.1016/j.cej.2021.133550

    91. [91]

      Wang, S. ; Li, X. ; Cheng, T. ; Liu, Y. ; Li, Q. ; Bai, M. ; Liu, X. ; Geng, H. ; Lai, W. ; Huang, W. Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J. Mater. Chem. A 2022, 10, 8761-8771.  doi: 10.1039/D1TA08771A

    92. [92]

      Shan, Z. ; Wu, M. ; Du, Y. ; Xu, B. ; He, B. ; Wu, X. ; Zhang, G. Covalent organic framework-based electrolytes for fast Li+ conduction and high-temperature solid-state lithium-ion batteries. Chem. Mate. 2021, 33, 5058-5066.  doi: 10.1021/acs.chemmater.1c00978

    93. [93]

      Xu, Q. ; Tao, S. ; Jiang, Q. ; Jiang, D. Ion conduction in polyelectrolyte covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 7429-7432.  doi: 10.1021/jacs.8b03814

    94. [94]

      Zhang, G. ; Hong, Y. L. ; Nishiyama, Y. ; Bai, S. ; Kitagawa, S. ; Horike, S. Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 2019, 141, 1227-1234.  doi: 10.1021/jacs.8b07670

    95. [95]

      Wang, Y. ; Zhang, K. ; Jiang, X. ; Liu, Z. ; Bian, S. ; Pan, Y. ; Shan, Z. ; Wu, M. ; Xu, B. ; Zhang, G. Branched poly(ethylene glycol)-functionalized covalent organic frameworks as solid electrolytes. ACS Appl. Energy Mater. 2021, 4, 11720-11725.  doi: 10.1021/acsaem.1c02426

    96. [96]

      Liu, Z. ; Zhang, K. ; Huang, G. ; Xu, B. ; Hong, Y. L. ; Wu, X. ; Nishiyama, Y. ; Horike, S. ; Zhang, G. ; Kitagawa, S. Highly processable covalent organic framework gel electrolyte enabled by side-chain engineering for lithium-ion batteries. Angew. Chem. Int. Ed. 2022, 61, e202110695.

    97. [97]

      Xu, Q. ; Tao, S. ; Jiang, Q. ; Jiang, D. Designing covalent organic frameworks with a tailored ionic interface for ion transport across one-dimensional channels. Angew. Chem. Int. Ed. 2020, 59, 4557-4563.  doi: 10.1002/anie.201915234

    98. [98]

      Du, Y. ; Yang, H. ; Whiteley, J. M. ; Wan, S. ; Jin, Y. ; Lee, S. H. ; Zhang, W. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 2016, 55, 1737-1741.  doi: 10.1002/anie.201509014

    99. [99]

      Chen, H. ; Tu, H. ; Hu, C. ; Liu, Y. ; Dong, D. ; Sun, Y. ; Dai, Y. ; Wang, S. ; Qian, H. ; Lin, Z. ; Chen, L. Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 2018, 140, 896-899.  doi: 10.1021/jacs.7b12292

    100. [100]

      Li, Z. ; Liu, Z. ; Mu, Z. ; Cao, C. ; Li, Z. ; Wang, T. ; Li, Y. ; Ding, X. ; Han, B. ; Feng, W. Cationic covalent organic framework based all-solid-state electrolytes. Mater. Chem. Front. 2020, 4, 1164-1173.  doi: 10.1039/C9QM00781D

    101. [101]

      Shaik, M. R. ; Bissannagari, M. ; Kwon, Y. M. ; Cho, K. Y. ; Kim, J. ; Yoon, S. Soft, robust, Li-ion friendly halloysite-based hybrid protective layer for dendrite-free Li metal anode. Chem. Eng. J. 2021, 424,

    102. [102]

      Huang, L. ; Xu, G. ; Du, X. ; Li, J. ; Xie, B. ; Liu, H. ; Han, P. ; Dong, S. ; Cui, G. ; Chen, L. Uncovering LiH triggered thermal runaway mechanism of a high-energy LiNi0.5Co0.2Mn0.3O2/graphite pouch cell. Adv. Sci. 2021, 8, e2100676.  doi: 10.1002/advs.202100676

    103. [103]

      Moyassari, E. ; Streck, L. ; Paul, N. ; Trunk, M. ; Neagu, R. ; Chang, C. ; Hou, S. ; Märkisch, B. ; Gilles, R. ; Jossen, A. Impact of silicon content within silicon-graphite anodes on performance and li concentration profiles of Li-ion cells using neutron depth profiling. J. Electrochem. Soc. 2021, 168, 020519.  doi: 10.1149/1945-7111/abe1db

    104. [104]

      Guo, H. ; Hou, G. ; Li, D. ; Sun, Q. ; Ai, Q. ; Si, P. ; Min, G. ; Lou, J. ; Feng, J. ; Ci, L. High current enabled stable lithium anode for ultralong cycling life of lithium-oxygen batteries. ACS Appl. Mater. Inter. 2019, 11, 30793-30800.  doi: 10.1021/acsami.9b08153

    105. [105]

      Jeong, K. ; Park, S. ; Jung, G. Y. ; Kim, S. H. ; Lee, Y. H. ; Kwak, S. K. ; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5880-5885.  doi: 10.1021/jacs.9b00543

    106. [106]

      Hu, Y. ; Dunlap, N. ; Wan, S. ; Lu, S. ; Huang, S. ; Sellinger, I. ; Ortiz, M. ; Jin, Y. ; Lee, S. H. ; Zhang, W. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 2019, 141, 7518-7525.  doi: 10.1021/jacs.9b02448

    107. [107]

      Meng, F. ; Bi, S. ; Sun, Z. ; Jiang, B. ; Wu, D. ; Chen, J. S. ; Zhang, F. Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated knoevenagel condensation. Angew. Chem. Int. Ed. 2021, 60, 13614-13620.  doi: 10.1002/anie.202104375

    108. [108]

      Guo, D. ; Shinde, D. B. ; Shin, W. ; Abou-Hamad, E. ; Emwas, A. H. ; Lai, Z. ; Manthiram, A. Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 2022, e2201410.

  • 加载中
    1. [1]

      Cha LiZining QiuHongming SunYijie YangCheng-Peng Li . Recent Progress in Covalent Organic Frameworks (COFs) for Electrocatalysis. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211084-2211099. doi: 10.14102/j.cnki.0254-5861.2022-0162

    2. [2]

      Chang-Pu WanJun-Dong YiRong CaoYuan-Biao Huang . Conductive Metal/Covalent Organic Frameworks for CO2 Electroreduction. Chinese Journal of Structural Chemistry, 2022, 41(5): 2205001-2205014. doi: 10.14102/j.cnki.0254-5861.2022-0075

    3. [3]

      Xu YinCui-Rong Liu . Synthesis and properties of ionic conduction polymer for anodic bonding. Chinese Chemical Letters, 2015, 26(3): 289-292. doi: 10.1016/j.cclet.2014.10.027

    4. [4]

      Hongwen ChenHuaqiang ChenBo ZhangLiming JiangYouqing ShenEngang FuDan ZhaoZhuxian Zhou . Tuning the release rate of volatile molecules by pore surface engineering in metal-organic frameworks. Chinese Chemical Letters, 2021, 32(6): 1988-1992. doi: 10.1016/j.cclet.2020.10.035

    5. [5]

      K. KesavanChithra M. MathewS. Rajendran . Lithium ion conduction and ion-polymer interaction in poly(vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chinese Chemical Letters, 2014, 25(11): 1428-1434. doi: 10.1016/j.cclet.2014.06.005

    6. [6]

      Wu Ming-XueYang Ying-Wei . Applications of covalent organic frameworks (COFs):From gas storage and separation to drug delivery. Chinese Chemical Letters, 2017, 28(6): 1135-1143. doi: 10.1016/j.cclet.2017.03.026

    7. [7]

      Tian ShaokangShao BowenWang ZhiqunLi ShangdaLiu XiangyuZhao YiboLi Lei . Organic ionic plastic crystal as electrolyte for lithium-oxygen batteries. Chinese Chemical Letters, 2019, 30(6): 1289-1292. doi: 10.1016/j.cclet.2019.02.027

    8. [8]

      Fei QuZiwei GuoDafeng JiangXian-En ZhaoIn situ growth of polydopamine on surface of covalent organic frameworks under the catalysis of acid phosphatase for dopamine detection. Chinese Chemical Letters, 2021, 32(11): 3368-3371. doi: 10.1016/j.cclet.2021.04.010

    9. [9]

      Yan An GAO Zhong Ni WANG Jin ZHANG Wan Guo HOU Gan Zuo LI Bu Xing HAN Feng Feng Lü Gao Yong ZHANG . Study on the Surface Property of Surfactant Ionic Liquids Solutions. Chinese Chemical Letters, 2005, 16(7): 963-966.

    10. [10]

      Zhi SHENBao-Min LUOHai-Quan XIEQiang ZHAO . Tricarboxy Ligand Cu Metal-organic Framework with Magnetic and Proton Conduction Properties. Chinese Journal of Structural Chemistry, 2020, 39(9): 1689-1693. doi: 10.14102/j.cnki.0254-5861.2011-2637

    11. [11]

      Ding YusenWang YanSu YanjieYang ZhiLiu JiaqiangHua XiaolinWei Hao . A novel channel-wall engineering strategy for two-dimensional cationic covalent organic frameworks: Microwave-assisted anion exchange and enhanced carbon dioxide capture. Chinese Chemical Letters, 2020, 31(1): 193-196. doi: 10.1016/j.cclet.2019.05.012

    12. [12]

      Yu ZhangShan-Shan LiuBo LiHanqi YouLongxi ZhangZhenyi ZhangHong-Ying ZangQi ZhengWeimin Xuan . Sulfonate-Functionalized Polyoxovanadate-Based Metal-Organic Polyhedra for Enhanced Proton Conduction via the Synergy of Linker and Metal Cluster Vertex. Chinese Journal of Structural Chemistry, 2022, 41(8): 2208012-2208017. doi: 10.14102/j.cnki.0254-5861.2022-0127

    13. [13]

      Zhang Gao LE Zhen Chu CHEN Yi HU Qin Guo ZHENG . Organic Reactions in Ionic Liquids:Ionic Liquid-promoted Three-component Condensation of Benzotriazole with Aldehyde and Alcohol. Chinese Chemical Letters, 2005, 16(2): 155-158.

    14. [14]

      Zhang Gao LE Zhen Chu CHEN Yi HU Qin Guo ZHENG . Organic Reactions in Ionic Liquids:Ionic Liquid-promoted Efficient Synthesis of Disubstituted and Trisubstituted Thioureas Derivatives. Chinese Chemical Letters, 2005, 16(2): 201-204.

    15. [15]

      Shengjie ZhangBin ChengYanxiong FangDai DangXin ShenZhiqiang LiMing WuYun HongQuanbing Liu . Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes. Chinese Chemical Letters, 2022, 33(8): 3951-3954. doi: 10.1016/j.cclet.2021.11.024

    16. [16]

      Wang Wen-HeGao QiangLi Ai-LinJia Yan-YuanZhang Shi-YuWang Jian-HongZhang Ying-HuiBu Xian-He . A coordination compound featuring a supramolecular hydrogen-bonding network for proton conduction. Chinese Chemical Letters, 2018, 29(2): 336-338. doi: 10.1016/j.cclet.2017.08.033

    17. [17]

      Li MaShan WangXiao FengBo Wang . Recent advances of covalent organic frameworks in electronic and optical applications. Chinese Chemical Letters, 2016, 27(8): 1383-1394. doi: 10.1016/j.cclet.2016.06.046

    18. [18]

      Lei YangDa-Cheng Wei . Semiconducting covalent organic frameworks: a type of two-dimensional conducting polymers. Chinese Chemical Letters, 2016, 27(8): 1395-1404. doi: 10.1016/j.cclet.2016.07.010

    19. [19]

      Zepeng LeiFrancisco W.S. LucasEnrique Canales MoyaShaofeng HuangYicheng RongAaron WeschePatrick LiLauren BodkinYinghua JinAdam HolewinskiWei Zhang . Highly stable dioxin-linked metallophthalocyanine covalent organic frameworks. Chinese Chemical Letters, 2021, 32(12): 3799-3802. doi: 10.1016/j.cclet.2021.04.047

    20. [20]

      Liping GuoJin ZhangQi HuangWei ZhouShangbin Jin . Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. Chinese Chemical Letters, 2022, 33(6): 2856-2866. doi: 10.1016/j.cclet.2022.02.065

Metrics
  • PDF Downloads(6)
  • Abstract views(254)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return