Citation: Sha Li, Xin Wang, Min Cao, Jingjun Lu, Li Qiu, Xiaoliang Yan. Engineering the Interface and Interaction Structure on Highly Coke-Resistant Ni/CeO2-Al2O3 Catalyst for Dry Reforming of Methane[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221200. doi: 10.14102/j.cnki.0254-5861.2022-0113 shu

Engineering the Interface and Interaction Structure on Highly Coke-Resistant Ni/CeO2-Al2O3 Catalyst for Dry Reforming of Methane

  • Corresponding author: Xiaoliang Yan,
  • Received Date: 7 May 2022
    Accepted Date: 1 August 2022
    Available Online: 6 August 2022


  • Designing and tailoring metal-support interaction in Ni-based catalysts with plentiful interfacial sites is of significant interest for achieving a targeted catalytic performance in dry reforming of methane (DRM), but remains as a challenging task. In this work, Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts with the same strong metal-support interaction (SMSI) but distinct interface structure are developed by an improved evaporation-induced self-assembly method using pseudobohemite gel as aluminum source. Ni/CeO2-Al2O3 exhibits superior catalytic activity and stability in DRM in comparison with Ni/Al2O3. The highest CH4 and CO2 conversion reaches at 71.4% and 82.1% for Ni/CeO2-Al2O3, which are higher than that of 64.3% and 75.6% for Ni/Al2O3 at 700 ℃. The SMSI effect in Ni/CeO2-Al2O3 provides more active interfacial sites with less coke deposition, and promotes the generation of active formate species which are the key intermediates for DRM. The findings of the present work could possibly pave the way for fabricating catalysts with SMSI strategy for efficient heterogeneous catalysis.
  • 加载中
    1. [1]

      Diao, Y. N.; Zhang, X.; Liu, Y.; Chen, B. B.; Wu, G. H.; Shi, C. Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: effects of β-Mo2C promoter. Appl. Catal. B Environ. 2022, 301, 120779.  doi: 10.1016/j.apcatb.2021.120779

    2. [2]

      Guo, Y.; Li, Y. F.; Ning, Y. X.; Liu, Q. K.; Tian, L.; Zhang, R. D.; Fu, Q.; Wang, Z. J. CO2 reforming of methane over a highly dispersed Ni/Mg-Al-O catalyst prepared by a facile and green method. Ind. Chem. Eng. Res. 2020, 59, 15506-15514.  doi: 10.1021/acs.iecr.0c02444

    3. [3]

      Zhang, T. T.; Liu, Z. X.; Zhu, Y. A.; Liu, Z. C.; Sui, Z. J.; Zhu, K. K.; Zhou, X. G. Dry reforming of methane on Ni-Fe-MgO catalysts: influence of Fe on carbon-resistant property and kinetics. Appl. Catal. B Environ. 2020, 264, 118497.  doi: 10.1016/j.apcatb.2019.118497

    4. [4]

      Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B. A.; Jamal, A.; Moon, D.; Choi, S. H.; Yavuz, C. T. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777-781.  doi: 10.1126/science.aav2412

    5. [5]

      Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529-541.  doi: 10.1002/cctc.201000358

    6. [6]

      Chen, S. Y.; Zaffran, J.; Yang, B. Descriptor design in the computational screening of Ni-based catalysts with balanced activity and stability for dry reforming of methane reaction. ACS Catal. 2020, 10, 3074-3083.  doi: 10.1021/acscatal.9b04429

    7. [7]

      Huang, Y. L.; Li, X. D. Zhang, Q.; Vinokurov, V. A.; Huang, W. Carbon deposition behaviors in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts. Fuel 2022, 310, 122449.  doi: 10.1016/j.fuel.2021.122449

    8. [8]

      Azancot, L.; Bobadilla, L. F.; Centeno, M. A.; Odriozola, J. A. IR spectroscopic insights into the coking-resistance effect of potassium on nickel-based catalyst during dry reforming of methane. Appl. Catal. B Environ. 2021, 285, 119822.  doi: 10.1016/j.apcatb.2020.119822

    9. [9]

      Liu, Z. Y.; Grinter, D. C.; Lustemberg, P. G.; Nguyen-Phan, T. D.; Zhou, Y. H.; Luo, S.; Waluyo, I.; Crumlin, E. J.; Stacchiola, D. J.; Zhou, J.; Carrasco, J.; Busnengo, H. F.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. Dry reforming of methane on a highly-active Ni-CeO2 catalyst: effects of metal-support interactions on C-H bond breaking. Angew. Chem. Int. Ed. 2016, 55, 7455-7459.  doi: 10.1002/anie.201602489

    10. [10]

      Akri, M.; Zhao, S.; Li, X. Y.; Zang, K. T.; Lee, A. F.; Isaacs, M. A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y. J.; Cui, Y. T.; Li, L.; Su, Y.; Pan, X. L.; Wen, W.; Pan, Y.; Wilson, K.; Li, L.; Qiao, B. T.; Ishii, H.; Liao, Y. F.; Wang, A. Q.; Wang, X. D.; Zhang, T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181.  doi: 10.1038/s41467-019-12843-w

    11. [11]

      Ewbank, J. L.; Kovarik, L.; Diallo, F. Z.; Sivers, C. Effect of metal-support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Appl. Catal. A Gen. 2015, 494, 57-67.  doi: 10.1016/j.apcata.2015.01.029

    12. [12]

      Yang, B.; Deng, J.; Li, H. R.; Yan, T. T.; Zhang, J. P.; Zhang, D. S. Coking-resistant dry reforming of methane over Ni/gamma-Al2O3 catalysts by rationally steering metal-support interaction. iScience 2021, 24, 102747.  doi: 10.1016/j.isci.2021.102747

    13. [13]

      Zhou, L.; Li, L. D.; Wei, N. N.; Li, J.; Basset, J. M. Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. ChemCatChem 2015, 7, 2508-2516.  doi: 10.1002/cctc.201500379

    14. [14]

      Zhang, S. S.; Ying, M.; Yu, J.; Zhan, W. C.; Wang, L.; Guo, Y.; Guo, Y. L. NixAl1O2-delta mesoporous catalysts for dry reforming of methane: the special role of NiAl2O4 spinel phase and its reaction mechanism. Appl. Catal. B Environ. 2021, 291, 120074.  doi: 10.1016/j.apcatb.2021.120074

    15. [15]

      Li, K.; Pei, C. L.; Li, X. Y.; Chen, S.; Zhang, X. H.; Liu, R.; Gong, J. L. Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction. Appl. Catal. B Environ. 2020, 264, 118448.  doi: 10.1016/j.apcatb.2019.118448

    16. [16]

      Stroud, T.; Smith, T. J.; Le, S. E.; Santos, J. L.; Centeno, M. A.; Arellano-Garcia, H.; Odriozola, J. A.; Reina, T. R. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Catal. B Environ. 2018, 224, 125-135.  doi: 10.1016/j.apcatb.2017.10.047

    17. [17]

      Wang, S. B.; Lu, M. Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. B Environ. 1998, 19, 267-277.  doi: 10.1016/S0926-3373(98)00081-2

    18. [18]

      Peng, W. X.; Wang, L. S.; Mirzaee, M.; Ahmadi, H.; Esfahani, M. J.; Fremaux, S. Hydrogen and syngas production by catalytic biomass gasification. Energy Convers. Manage. 2017, 135, 270-273.  doi: 10.1016/j.enconman.2016.12.056

    19. [19]

      Biset-Peiró, M.; Guilera, J.; Zhang, T.; Arbiol, J.; Andreu, T. On the role of ceria in Ni-Al2O3 catalyst for CO2 plasma methanation. Appl. Catal. A Gen. 2019, 575, 223-229.  doi: 10.1016/j.apcata.2019.02.028

    20. [20]

      Luisetto, I.; Tuti, S.; Battocchio, C.; Lo Mastro, S.; Sodo, A. Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl. Catal. A Gen. 2015, 500, 12-22.  doi: 10.1016/j.apcata.2015.05.004

    21. [21]

      Ahmed, W.; Awadallah, A. E.; Aboul-Enein, A. A. Ni/CeO2-Al2O3 catalysts for methane thermo-catalytic decomposition to COx-free H2 production. Int. J. Hydrogen Energy 2016, 41, 18484-18493.  doi: 10.1016/j.ijhydene.2016.08.177

    22. [22]

      Anita, H.; Miklós, N.; Andrea, B.; Boglárka, M.; György, S.; Giuseppe, P.; Leonarda, F. L.; Anna, M. V.; ValeriaLa, P. Strong impact of indium promoter on Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts used in dry reforming of methane. Appl. Catal. A Gen. 2021, 621, 118174.  doi: 10.1016/j.apcata.2021.118174

    23. [23]

      Song, Z. W.; Wang, Q. Q.; Guo, C.; Li, S.; Yan, W. J.; Jiao, W. Y.; Qiu, L.; Yan, X. L.; Li, R. F. Improved effect of Fe on the stable NiFe/Al2O3 catalyst in low-temperature dry reforming of methane. Ind. Eng. Chem. Res. 2020, 59, 17250-17258.  doi: 10.1021/acs.iecr.0c01204

    24. [24]

      Meng, F. H.; Li, X.; Li, M. H.; Cui, X. X.; Li, Z. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor. Chem. Eng. J. 2016, 313, 1548-1555.

    25. [25]

      Rynkowski, J. M.; Paryjczak, T.; Lenik, M. On the nature of oxidic nickel phases in NiO/γ-AI2O3 catalysts. Appl. Catal. A Gen. 1993, 106, 73-82.  doi: 10.1016/0926-860X(93)80156-K

    26. [26]

      Ai, H. M.; Yang, H. Y.; Liu, Q.; Zhao, G. M.; Yang, J.; Gu, F. N. ZrO2-modified Ni/LaAl11O18 catalyst for CO methanation: effects of catalyst structure on catalytic performance. Chin. J. Catal. 2018, 39, 297-308.  doi: 10.1016/S1872-2067(17)62995-4

    27. [27]

      Tan, M.; Wang, X.; Wang, X.; Zou, X.; Ding, W.; Lu, X. Influence of calcination temperature on textural and structural properties, reducibility, and catalytic behavior of mesoporous γ-alumina-supported Ni-Mg oxides by one-pot template-free route. J. Catal. 2015, 329, 151-166.  doi: 10.1016/j.jcat.2015.05.011

    28. [28]

      Yan, X. L.; Zhao, B. R.; Liu, Y.; Li, Y. N. Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: current status and perspective. Catal. Today 2015, 256, 29-40.  doi: 10.1016/j.cattod.2015.04.045

    29. [29]

      Al-Fatesh, A. S.; Naeem, M. A.; Fakeeha, A. H.; Abasaeed, A. E. Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane. Chin. J. Chem. Eng. 2014, 22, 28-37.  doi: 10.1016/S1004-9541(14)60029-X

    30. [30]

      McCarty, J. G.; Wise, H. Hydrogenation of surface carbon on alumina-supported nickel. J. Catal. 1979, 57, 406-416.  doi: 10.1016/0021-9517(79)90007-1

    31. [31]

      Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127-134.  doi: 10.1038/s41929-017-0016-y

    32. [32]

      Pan, Y.; Liu C. J.; Ge, Q. Adsorption and protonation of CO2 on partially hydroxylated γ-Al2O3 surfaces: a density functional theory study. Langmuir 2008, 24, 12410-12419.  doi: 10.1021/la802295x

    33. [33]

      Busca, G.; Lorenzelli, V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982, 7, 89-126.  doi: 10.1016/0390-6035(82)90059-1

    34. [34]

      Wang, X.; Hong, Y. C.; Shi, H.; Szanyi, J. Kinetic modeling and transient DRIFTS-MS studies of CO2 methanation over Ru/Al2O3 catalysts. J. Catal. 2016, 343, 185-195.  doi: 10.1016/j.jcat.2016.02.001

    35. [35]

      Alarcon, A.; Guilera, J.; Soto, R.; Andreu, T. Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2. Appl. Catal. B Environ. 2020, 263, 118346.  doi: 10.1016/j.apcatb.2019.118346

    36. [36]

      Zhang, X. Y.; Deng, J.; Pupucevski, M.; Impeng, S.; Yang, B.; Chen, G. R.; Kuboon, S.; Zhong, Q. D.; Faungnawakij, K.; Zheng, L. R.; Wu, G.; Zhang, D. S. High-performance binary Mo-Ni catalysts for efficient carbon removal during carbon dioxide reforming of methane. ACS Catal. 2021, 11, 12087-12095.  doi: 10.1021/acscatal.1c02124

    37. [37]

      Shi, L.; Yang, G. H.; Tao, K.; Yoneyama, Y.; Tan, Y. S.; Tsubaki, N. An introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Acc. Chem. Res. 2013, 46, 1838-1847.  doi: 10.1021/ar300217j

    38. [38]

      Szanyi, J.; Kwak, J. H. Dissecting the steps of CO2 reduction: 2. The interaction of CO and CO2 with Pd/gamma-Al2O3: an in situ FTIR study. Phys. Chem. Chem. Phys. 2014, 16, 15126-15138.  doi: 10.1039/C4CP00617H

    39. [39]

      Ni, J.; Chen, L. W.; Lin, J. Y.; Kawi, S. Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy 2012, 1, 674-686.  doi: 10.1016/j.nanoen.2012.07.011

    40. [40]

      Ferreira-Aparicio, P.; Fernandez-Garcia, M.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Evaluation of the role of the metal-support interfacial centers in the dry reforming of methane on alumina-supported rhodium catalysts. J. Catal. 2000, 190, 296-308.  doi: 10.1006/jcat.1999.2752

    41. [41]

      Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. CO2/CH4 reforming over Ni-La2O3/5A: an investigation on carbon deposition and reaction steps. J. Catal. 2000, 194, 198-210.  doi: 10.1006/jcat.2000.2941

    42. [42]

      Yan, X. L.; Hu, T.; Liu, P.; Li, S.; Zhao, B. R.; Zhang, Q.; Jiao, W. Y.; Chen, S.; Wang, P. F.; Lu, J. J. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B Environ. 2019, 246, 221-231.  doi: 10.1016/j.apcatb.2019.01.070

  • 加载中
    1. [1]

      Lijun ZhangYoulin WuNoritatsu TsubakiZhiliang Jin . 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2023, 39(12): 2302051-0. doi: 10.3866/PKU.WHXB202302051

    2. [2]

      ZHOU Wei-HuaXIAO De-HaiLI JingYANG Xiang-GuangWU Yue . Catalytic Properties of Ni-Ce-O/ZrO2 in Low-Temperature Methane Combustion. Chinese Journal of Applied Chemistry, 2006, 23(2): 131-135.

    3. [3]

      Ke YEGuo-Xiong WANGXin-He BAO . Electrodeposited Sn-based Catalysts for CO2 Electroreduction. Chinese Journal of Structural Chemistry, 2020, 39(2): 206-213. doi: 10.14102/j.cnki.0254–5861.2011–2011-2756

    4. [4]

      FAN Qi-yuanBAI XueZENG Shang-hong . CeO2/CuO catalysts prepared by surfactant-template method for preferential CO oxidation in H2-rich stream. Journal of Fuel Chemistry and Technology, 2014, 42(5): 603-608.

    5. [5]

      Teng YanXiaojie ZhangHua LiuZhiliang Jin . CeO2 Particles Anchored to Ni2P Nanoplate for Efficient Photocatalytic Hydrogen Evolution. Chinese Journal of Structural Chemistry, 2022, 41(1): 2201047-2201053. doi: 10.14102/j.cnki.0254-5861.2021-0057

    6. [6]

      Jiarui GaoJia-Wei YangTenglin MaJia WangDan XiaBin DuYan CuiChengwu Yang . Mechanism study on direct synthesis of glycerol carbonate from CO2 and glycerol over shaped CeO2 model catalysts. Chinese Chemical Letters, 2023, 34(12): 108395-1-108395-6. doi: 10.1016/j.cclet.2023.108395

    7. [7]

      MENG ShuaiqiZHOU JinsongWANG XiaolongGAO XiangLUO Zhongyang . Adsorption and Removal of Hg on Pd Doped CeO2 Surfaces. Chinese Journal of Applied Chemistry, 2016, 33(8): 960-967. doi: 10.11944/j.issn.1000-0518.2016.08.150359

    8. [8]

      Wang De-JunCui YiZhang JieLi Tie-JinDong Xiang-TingHong Guang-Yan . Photovoltaic Properties and Quantum Size Effect in Nanocrystalline CeO2. Acta Physico-Chimica Sinica, 1995, 11(09): 812-817. doi: 10.3866/PKU.WHXB19950910

    9. [9]

      Dai MimiWang JianLi LingeWang QiLiu MeinanZhang Yuegang . High-performance Oxygen Evolution Catalyst Enabled by Interfacial Effect between CeO2 and FeNi Metal-organic Framework. Acta Chimica Sinica, 2020, 78(4): 355-362. doi: 10.6023/A20010017

    10. [10]

      Zhang SaiZhang MingkaiQu Yongquan . Solid Frustrated Lewis Pairs Constructed on CeO2 for Small-Molecule Activation. Acta Physico-Chimica Sinica, 2020, 36(9): 1911050-0. doi: 10.3866/PKU.WHXB201911050

    11. [11]

      SONG Zhong-xianDU Hui-xianZHAO Bao-linLIU Xue-pingKANG Hai-yanLIU BiaoMAO Yan-liFU Yong-meiLIU PanGUO Yi-fei . Study on the synergistic effect of CeO2 and WO3 on the catalytic performance of CeO2-WO3 for the selective catalytic reduction of NOx by NH3. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1129-1136.

    12. [12]

      Jiang XiaoyuanZhou RenxianMao JianxinZheng Xiaoming . Cocatalytic Role of CeO2 in Combination with Pd/γ-Al2O3 Catalyst. Chinese Journal of Applied Chemistry, 1999, 16(1): 26-29.

    13. [13]

      Jin Qian Yao Xue Yanhui Ao Peifang Wang Chao Wang . Hydrothermal synthesis of CeO2/NaNbO3 composites with enhanced photocatalytic performance. Chinese Journal of Catalysis, 2018, 39(4): 682-692. doi: 10.1016/S1872-2067(17)62975-9

    14. [14]

      Matthias Scharfe Guido Zichittella Vladimir Paunović Javier Pérez-Ramírez . Ceria in halogen chemistry. Chinese Journal of Catalysis, 2020, 41(6): 915-927. doi: S1872-2067(19)63528-X

    15. [15]

      HUANG Jian-PingCHEN FangSHE Xiao-MeiWANG HeSHI Hui-Ming . Solvothermal Synthesis and Photocatalytic Property of Fe-CeO2 and N-Fe-CeO2. Chinese Journal of Inorganic Chemistry, 2018, 34(5): 834-842. doi: 10.11862/CJIC.2018.092

    16. [16]

      WANG Bao-weiMENG Da-junWANG Wei-hanLI Zhen-huaMA Xin-bin . Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1479-1484.

    17. [17]

      Sheng-Ping WangJing-Jie ZhouShu-Yang ZhaoYu-Jun ZhaoXin-Bin Ma . Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria. Chinese Chemical Letters, 2015, 26(9): 1096-1100. doi: 10.1016/j.cclet.2015.05.005

    18. [18]

      Xiaoxia Dai Weiyu Jiang Wanglong Wang Xiaole Weng Yuan Shang Yehui Xue Zhongbiao Wu . Supercritical water syntheses of transition metal-doped CeO2nano-catalysts for selective catalytic reduction of NO by CO: An in situ diffuse reflectance Fourier transform infrared spectroscopy study. Chinese Journal of Catalysis, 2018, 39(4): 728-735. doi: 10.1016/S1872-2067(17)63008-0

    19. [19]

      Chu SenlinLi XinRobertson Alex W.Sun Zhenyu . Electrocatalytic CO2 Reduction to Ethylene over CeO2-Supported Cu Nanoparticles: Effect of Exposed Facets of CeO2. Acta Physico-Chimica Sinica, 2021, 37(5): 2009023-0. doi: 10.3866/PKU.WHXB202009023

    20. [20]

      GUO Gui-BaoCAI YingLI Yu-ShengAN Sheng-Li . Nanometer Sized CeO2 Particles Prepared by Coupling Homogeneous Precipitation and Carbon Absorption and Their Characterization. Chinese Journal of Applied Chemistry, 2006, 23(6): 622-625.

  • PDF Downloads(16)
  • Abstract views(667)
  • HTML views(70)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint