Engineering the Interface and Interaction Structure on Highly Coke-Resistant Ni/CeO2-Al2O3 Catalyst for Dry Reforming of Methane
- Corresponding author: Xiaoliang Yan, yanxiaoliang@tyut.edu.cn
Citation:
Sha Li, Xin Wang, Min Cao, Jingjun Lu, Li Qiu, Xiaoliang Yan. Engineering the Interface and Interaction Structure on Highly Coke-Resistant Ni/CeO2-Al2O3 Catalyst for Dry Reforming of Methane[J]. Chinese Journal of Structural Chemistry,
;2022, 41(12): 221200.
doi:
10.14102/j.cnki.0254-5861.2022-0113
Diao, Y. N.; Zhang, X.; Liu, Y.; Chen, B. B.; Wu, G. H.; Shi, C. Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: effects of β-Mo2C promoter. Appl. Catal. B Environ. 2022, 301, 120779.
doi: 10.1016/j.apcatb.2021.120779
Guo, Y.; Li, Y. F.; Ning, Y. X.; Liu, Q. K.; Tian, L.; Zhang, R. D.; Fu, Q.; Wang, Z. J. CO2 reforming of methane over a highly dispersed Ni/Mg-Al-O catalyst prepared by a facile and green method. Ind. Chem. Eng. Res. 2020, 59, 15506-15514.
doi: 10.1021/acs.iecr.0c02444
Zhang, T. T.; Liu, Z. X.; Zhu, Y. A.; Liu, Z. C.; Sui, Z. J.; Zhu, K. K.; Zhou, X. G. Dry reforming of methane on Ni-Fe-MgO catalysts: influence of Fe on carbon-resistant property and kinetics. Appl. Catal. B Environ. 2020, 264, 118497.
doi: 10.1016/j.apcatb.2019.118497
Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B. A.; Jamal, A.; Moon, D.; Choi, S. H.; Yavuz, C. T. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777-781.
doi: 10.1126/science.aav2412
Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529-541.
doi: 10.1002/cctc.201000358
Chen, S. Y.; Zaffran, J.; Yang, B. Descriptor design in the computational screening of Ni-based catalysts with balanced activity and stability for dry reforming of methane reaction. ACS Catal. 2020, 10, 3074-3083.
doi: 10.1021/acscatal.9b04429
Huang, Y. L.; Li, X. D. Zhang, Q.; Vinokurov, V. A.; Huang, W. Carbon deposition behaviors in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts. Fuel 2022, 310, 122449.
doi: 10.1016/j.fuel.2021.122449
Azancot, L.; Bobadilla, L. F.; Centeno, M. A.; Odriozola, J. A. IR spectroscopic insights into the coking-resistance effect of potassium on nickel-based catalyst during dry reforming of methane. Appl. Catal. B Environ. 2021, 285, 119822.
doi: 10.1016/j.apcatb.2020.119822
Liu, Z. Y.; Grinter, D. C.; Lustemberg, P. G.; Nguyen-Phan, T. D.; Zhou, Y. H.; Luo, S.; Waluyo, I.; Crumlin, E. J.; Stacchiola, D. J.; Zhou, J.; Carrasco, J.; Busnengo, H. F.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. Dry reforming of methane on a highly-active Ni-CeO2 catalyst: effects of metal-support interactions on C-H bond breaking. Angew. Chem. Int. Ed. 2016, 55, 7455-7459.
doi: 10.1002/anie.201602489
Akri, M.; Zhao, S.; Li, X. Y.; Zang, K. T.; Lee, A. F.; Isaacs, M. A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y. J.; Cui, Y. T.; Li, L.; Su, Y.; Pan, X. L.; Wen, W.; Pan, Y.; Wilson, K.; Li, L.; Qiao, B. T.; Ishii, H.; Liao, Y. F.; Wang, A. Q.; Wang, X. D.; Zhang, T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181.
doi: 10.1038/s41467-019-12843-w
Ewbank, J. L.; Kovarik, L.; Diallo, F. Z.; Sivers, C. Effect of metal-support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Appl. Catal. A Gen. 2015, 494, 57-67.
doi: 10.1016/j.apcata.2015.01.029
Yang, B.; Deng, J.; Li, H. R.; Yan, T. T.; Zhang, J. P.; Zhang, D. S. Coking-resistant dry reforming of methane over Ni/gamma-Al2O3 catalysts by rationally steering metal-support interaction. iScience 2021, 24, 102747.
doi: 10.1016/j.isci.2021.102747
Zhou, L.; Li, L. D.; Wei, N. N.; Li, J.; Basset, J. M. Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. ChemCatChem 2015, 7, 2508-2516.
doi: 10.1002/cctc.201500379
Zhang, S. S.; Ying, M.; Yu, J.; Zhan, W. C.; Wang, L.; Guo, Y.; Guo, Y. L. NixAl1O2-delta mesoporous catalysts for dry reforming of methane: the special role of NiAl2O4 spinel phase and its reaction mechanism. Appl. Catal. B Environ. 2021, 291, 120074.
doi: 10.1016/j.apcatb.2021.120074
Li, K.; Pei, C. L.; Li, X. Y.; Chen, S.; Zhang, X. H.; Liu, R.; Gong, J. L. Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction. Appl. Catal. B Environ. 2020, 264, 118448.
doi: 10.1016/j.apcatb.2019.118448
Stroud, T.; Smith, T. J.; Le, S. E.; Santos, J. L.; Centeno, M. A.; Arellano-Garcia, H.; Odriozola, J. A.; Reina, T. R. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Catal. B Environ. 2018, 224, 125-135.
doi: 10.1016/j.apcatb.2017.10.047
Wang, S. B.; Lu, M. Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. B Environ. 1998, 19, 267-277.
doi: 10.1016/S0926-3373(98)00081-2
Peng, W. X.; Wang, L. S.; Mirzaee, M.; Ahmadi, H.; Esfahani, M. J.; Fremaux, S. Hydrogen and syngas production by catalytic biomass gasification. Energy Convers. Manage. 2017, 135, 270-273.
doi: 10.1016/j.enconman.2016.12.056
Biset-Peiró, M.; Guilera, J.; Zhang, T.; Arbiol, J.; Andreu, T. On the role of ceria in Ni-Al2O3 catalyst for CO2 plasma methanation. Appl. Catal. A Gen. 2019, 575, 223-229.
doi: 10.1016/j.apcata.2019.02.028
Luisetto, I.; Tuti, S.; Battocchio, C.; Lo Mastro, S.; Sodo, A. Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl. Catal. A Gen. 2015, 500, 12-22.
doi: 10.1016/j.apcata.2015.05.004
Ahmed, W.; Awadallah, A. E.; Aboul-Enein, A. A. Ni/CeO2-Al2O3 catalysts for methane thermo-catalytic decomposition to COx-free H2 production. Int. J. Hydrogen Energy 2016, 41, 18484-18493.
doi: 10.1016/j.ijhydene.2016.08.177
Anita, H.; Miklós, N.; Andrea, B.; Boglárka, M.; György, S.; Giuseppe, P.; Leonarda, F. L.; Anna, M. V.; ValeriaLa, P. Strong impact of indium promoter on Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts used in dry reforming of methane. Appl. Catal. A Gen. 2021, 621, 118174.
doi: 10.1016/j.apcata.2021.118174
Song, Z. W.; Wang, Q. Q.; Guo, C.; Li, S.; Yan, W. J.; Jiao, W. Y.; Qiu, L.; Yan, X. L.; Li, R. F. Improved effect of Fe on the stable NiFe/Al2O3 catalyst in low-temperature dry reforming of methane. Ind. Eng. Chem. Res. 2020, 59, 17250-17258.
doi: 10.1021/acs.iecr.0c01204
Meng, F. H.; Li, X.; Li, M. H.; Cui, X. X.; Li, Z. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor. Chem. Eng. J. 2016, 313, 1548-1555.
Rynkowski, J. M.; Paryjczak, T.; Lenik, M. On the nature of oxidic nickel phases in NiO/γ-AI2O3 catalysts. Appl. Catal. A Gen. 1993, 106, 73-82.
doi: 10.1016/0926-860X(93)80156-K
Ai, H. M.; Yang, H. Y.; Liu, Q.; Zhao, G. M.; Yang, J.; Gu, F. N. ZrO2-modified Ni/LaAl11O18 catalyst for CO methanation: effects of catalyst structure on catalytic performance. Chin. J. Catal. 2018, 39, 297-308.
doi: 10.1016/S1872-2067(17)62995-4
Tan, M.; Wang, X.; Wang, X.; Zou, X.; Ding, W.; Lu, X. Influence of calcination temperature on textural and structural properties, reducibility, and catalytic behavior of mesoporous γ-alumina-supported Ni-Mg oxides by one-pot template-free route. J. Catal. 2015, 329, 151-166.
doi: 10.1016/j.jcat.2015.05.011
Yan, X. L.; Zhao, B. R.; Liu, Y.; Li, Y. N. Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: current status and perspective. Catal. Today 2015, 256, 29-40.
doi: 10.1016/j.cattod.2015.04.045
Al-Fatesh, A. S.; Naeem, M. A.; Fakeeha, A. H.; Abasaeed, A. E. Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane. Chin. J. Chem. Eng. 2014, 22, 28-37.
doi: 10.1016/S1004-9541(14)60029-X
McCarty, J. G.; Wise, H. Hydrogenation of surface carbon on alumina-supported nickel. J. Catal. 1979, 57, 406-416.
doi: 10.1016/0021-9517(79)90007-1
Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127-134.
doi: 10.1038/s41929-017-0016-y
Pan, Y.; Liu C. J.; Ge, Q. Adsorption and protonation of CO2 on partially hydroxylated γ-Al2O3 surfaces: a density functional theory study. Langmuir 2008, 24, 12410-12419.
doi: 10.1021/la802295x
Busca, G.; Lorenzelli, V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982, 7, 89-126.
doi: 10.1016/0390-6035(82)90059-1
Wang, X.; Hong, Y. C.; Shi, H.; Szanyi, J. Kinetic modeling and transient DRIFTS-MS studies of CO2 methanation over Ru/Al2O3 catalysts. J. Catal. 2016, 343, 185-195.
doi: 10.1016/j.jcat.2016.02.001
Alarcon, A.; Guilera, J.; Soto, R.; Andreu, T. Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2. Appl. Catal. B Environ. 2020, 263, 118346.
doi: 10.1016/j.apcatb.2019.118346
Zhang, X. Y.; Deng, J.; Pupucevski, M.; Impeng, S.; Yang, B.; Chen, G. R.; Kuboon, S.; Zhong, Q. D.; Faungnawakij, K.; Zheng, L. R.; Wu, G.; Zhang, D. S. High-performance binary Mo-Ni catalysts for efficient carbon removal during carbon dioxide reforming of methane. ACS Catal. 2021, 11, 12087-12095.
doi: 10.1021/acscatal.1c02124
Shi, L.; Yang, G. H.; Tao, K.; Yoneyama, Y.; Tan, Y. S.; Tsubaki, N. An introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Acc. Chem. Res. 2013, 46, 1838-1847.
doi: 10.1021/ar300217j
Szanyi, J.; Kwak, J. H. Dissecting the steps of CO2 reduction: 2. The interaction of CO and CO2 with Pd/gamma-Al2O3: an in situ FTIR study. Phys. Chem. Chem. Phys. 2014, 16, 15126-15138.
doi: 10.1039/C4CP00617H
Ni, J.; Chen, L. W.; Lin, J. Y.; Kawi, S. Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy 2012, 1, 674-686.
doi: 10.1016/j.nanoen.2012.07.011
Ferreira-Aparicio, P.; Fernandez-Garcia, M.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Evaluation of the role of the metal-support interfacial centers in the dry reforming of methane on alumina-supported rhodium catalysts. J. Catal. 2000, 190, 296-308.
doi: 10.1006/jcat.1999.2752
Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. CO2/CH4 reforming over Ni-La2O3/5A: an investigation on carbon deposition and reaction steps. J. Catal. 2000, 194, 198-210.
doi: 10.1006/jcat.2000.2941
Yan, X. L.; Hu, T.; Liu, P.; Li, S.; Zhao, B. R.; Zhang, Q.; Jiao, W. Y.; Chen, S.; Wang, P. F.; Lu, J. J. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B Environ. 2019, 246, 221-231.
doi: 10.1016/j.apcatb.2019.01.070
Lijun Zhang , Youlin Wu , Noritatsu Tsubaki , Zhiliang Jin . 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2023, 39(12): 2302051-0. doi: 10.3866/PKU.WHXB202302051
ZHOU Wei-Hua , XIAO De-Hai , LI Jing , YANG Xiang-Guang , WU Yue . Catalytic Properties of Ni-Ce-O/ZrO2 in Low-Temperature Methane Combustion. Chinese Journal of Applied Chemistry, 2006, 23(2): 131-135.
Ke YE , Guo-Xiong WANG , Xin-He BAO . Electrodeposited Sn-based Catalysts for CO2 Electroreduction. Chinese Journal of Structural Chemistry, 2020, 39(2): 206-213. doi: 10.14102/j.cnki.0254–5861.2011–2011-2756
FAN Qi-yuan , BAI Xue , ZENG Shang-hong . CeO2/CuO catalysts prepared by surfactant-template method for preferential CO oxidation in H2-rich stream. Journal of Fuel Chemistry and Technology, 2014, 42(5): 603-608.
Teng Yan , Xiaojie Zhang , Hua Liu , Zhiliang Jin . CeO2 Particles Anchored to Ni2P Nanoplate for Efficient Photocatalytic Hydrogen Evolution. Chinese Journal of Structural Chemistry, 2022, 41(1): 2201047-2201053. doi: 10.14102/j.cnki.0254-5861.2021-0057
Jiarui Gao , Jia-Wei Yang , Tenglin Ma , Jia Wang , Dan Xia , Bin Du , Yan Cui , Chengwu Yang . Mechanism study on direct synthesis of glycerol carbonate from CO2 and glycerol over shaped CeO2 model catalysts. Chinese Chemical Letters, 2023, 34(12): 108395-1-108395-6. doi: 10.1016/j.cclet.2023.108395
MENG Shuaiqi , ZHOU Jinsong , WANG Xiaolong , GAO Xiang , LUO Zhongyang . Adsorption and Removal of Hg on Pd Doped CeO2 Surfaces. Chinese Journal of Applied Chemistry, 2016, 33(8): 960-967. doi: 10.11944/j.issn.1000-0518.2016.08.150359
Wang De-Jun , Cui Yi , Zhang Jie , Li Tie-Jin , Dong Xiang-Ting , Hong Guang-Yan . Photovoltaic Properties and Quantum Size Effect in Nanocrystalline CeO2. Acta Physico-Chimica Sinica, 1995, 11(09): 812-817. doi: 10.3866/PKU.WHXB19950910
Dai Mimi , Wang Jian , Li Linge , Wang Qi , Liu Meinan , Zhang Yuegang . High-performance Oxygen Evolution Catalyst Enabled by Interfacial Effect between CeO2 and FeNi Metal-organic Framework. Acta Chimica Sinica, 2020, 78(4): 355-362. doi: 10.6023/A20010017
Zhang Sai , Zhang Mingkai , Qu Yongquan . Solid Frustrated Lewis Pairs Constructed on CeO2 for Small-Molecule Activation. Acta Physico-Chimica Sinica, 2020, 36(9): 1911050-0. doi: 10.3866/PKU.WHXB201911050
SONG Zhong-xian , DU Hui-xian , ZHAO Bao-lin , LIU Xue-ping , KANG Hai-yan , LIU Biao , MAO Yan-li , FU Yong-mei , LIU Pan , GUO Yi-fei . Study on the synergistic effect of CeO2 and WO3 on the catalytic performance of CeO2-WO3 for the selective catalytic reduction of NOx by NH3. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1129-1136.
Jiang Xiaoyuan , Zhou Renxian , Mao Jianxin , Zheng Xiaoming . Cocatalytic Role of CeO2 in Combination with Pd/γ-Al2O3 Catalyst. Chinese Journal of Applied Chemistry, 1999, 16(1): 26-29.
Jin Qian , Yao Xue , Yanhui Ao , Peifang Wang , Chao Wang . Hydrothermal synthesis of CeO2/NaNbO3 composites with enhanced photocatalytic performance. Chinese Journal of Catalysis, 2018, 39(4): 682-692. doi: 10.1016/S1872-2067(17)62975-9
Matthias Scharfe , Guido Zichittella , Vladimir Paunović , Javier Pérez-Ramírez . Ceria in halogen chemistry. Chinese Journal of Catalysis, 2020, 41(6): 915-927. doi: S1872-2067(19)63528-X
HUANG Jian-Ping , CHEN Fang , SHE Xiao-Mei , WANG He , SHI Hui-Ming . Solvothermal Synthesis and Photocatalytic Property of Fe-CeO2 and N-Fe-CeO2. Chinese Journal of Inorganic Chemistry, 2018, 34(5): 834-842. doi: 10.11862/CJIC.2018.092
WANG Bao-wei , MENG Da-jun , WANG Wei-han , LI Zhen-hua , MA Xin-bin . Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1479-1484.
Sheng-Ping Wang , Jing-Jie Zhou , Shu-Yang Zhao , Yu-Jun Zhao , Xin-Bin Ma . Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria. Chinese Chemical Letters, 2015, 26(9): 1096-1100. doi: 10.1016/j.cclet.2015.05.005
Xiaoxia Dai , Weiyu Jiang , Wanglong Wang , Xiaole Weng , Yuan Shang , Yehui Xue , Zhongbiao Wu . Supercritical water syntheses of transition metal-doped CeO2nano-catalysts for selective catalytic reduction of NO by CO: An in situ diffuse reflectance Fourier transform infrared spectroscopy study. Chinese Journal of Catalysis, 2018, 39(4): 728-735. doi: 10.1016/S1872-2067(17)63008-0
Chu Senlin , Li Xin , Robertson Alex W. , Sun Zhenyu . Electrocatalytic CO2 Reduction to Ethylene over CeO2-Supported Cu Nanoparticles: Effect of Exposed Facets of CeO2. Acta Physico-Chimica Sinica, 2021, 37(5): 2009023-0. doi: 10.3866/PKU.WHXB202009023
GUO Gui-Bao , CAI Ying , LI Yu-Sheng , AN Sheng-Li . Nanometer Sized CeO2 Particles Prepared by Coupling Homogeneous Precipitation and Carbon Absorption and Their Characterization. Chinese Journal of Applied Chemistry, 2006, 23(6): 622-625.