Citation: Wanlin Zhou, Jingjing Jiang, Weiren Cheng, Hui Su, Qinghua Liu. In-Situ Synchrotron Radiation Infrared Spectroscopic Identification of Reactive Intermediates over Multiphase Electrocatalytic Interfaces[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 2210004-2210015. doi: 10.14102/j.cnki.0254-5861.2022-0083 shu

In-Situ Synchrotron Radiation Infrared Spectroscopic Identification of Reactive Intermediates over Multiphase Electrocatalytic Interfaces






  • Author Bio: Wanlin Zhou received her B.S. degree from the Northeastern University in June 2018. She is currently studying for her Ph.D. degree at University of Science and Technology of China (USTC). Her current research focuses on the design and characterization of electrocatalysts for industrial energy storage and conversion technologies. She specializes in tracing the local structure evolution and catalytic dynamics of heterogeneous catalytic interfaces by using in-situ synchrotron radiation XAS and FTIR techniques
    Jingjing Jiang received her B.S. degree from the Anhui University in June 2021. She is currently studying for a doctorate at University of Science and Technology of China under the supervision of Prof. Shiqiang Wei and Prof
    Weiren Cheng received his Ph.D. degree from the University of Science and Technology of China (USTC) in June 2015, and is a member of National Synchrotron Radiation Laboratory, USTC, and a foreign researcher in Hokkaido University, Japan, now. He currently interests in the design and synthesis of advanced functional nanomaterials for energy-related applications as well as the understanding of their catalytic mechanisms by in-situ synchrotron techniques
    Hui Su received his B.S. degree from the Hefei University of Technology in June 2015 and Ph.D. degree from the University of Science and Technology of China (USTC) in June 2020, and is a member of National Synchrotron Radiation Laboratory, USTC. His current research focuses on engineering nanoscale catalysts at the atomic scale to enable high efficiency renewable energy conversion, and probing and understanding of nanoscale catalysts dynamic structure evolution at solid-liquid interface for reaction kinetics studies by operando synchrotron radiation XAS & FTIR techniques
    Qinghua Liu is currently a doctoral supervisor of National Synchrotron Radiation Laboratory, University of Science and Technology of China (USTC). He received his Ph.D. in 2009 from USTC and subsequently performed research work on renewable energy conversion and synchrotron radiation experimental techniques. His current research interests focus on the synthesis and characterization of advanced energy functional nanomaterials for photocatalytic, electrochemical, and photoelectrochemical applications and the development of advanced in situ/operando synchrotron radiation experimental techniques and their applications in energy storage and reaction mechanisms
  • Corresponding author: Hui Su, suhui@ustc.edu.cn Qinghua Liu, qhliu@ustc.edu.cn
  • Received Date: 12 April 2022
    Accepted Date: 30 April 2022
    Available Online: 12 May 2022

Figures(7)

  • A comprehensive understanding of the microscopic reaction mechanisms at the gas-solid-liquid electrochemical interfaces is urgently required for the development of advanced electrocatalysts applied in burgeoning sustainable energy conversion systems. In-situ synchrotron radiation Fourier transform infrared (SR-FTIR) spectroscopy is one of the most powerful techniques for investigating the evolving dynamics of reactive intermediates during electrocatalytic reactions. In this review, we methodically summarize the recent progress in the research of dynamic mechanisms for valuable electrocatalytic reactions based on in-situ SR-FTIR methodology. Moreover, the merits and drawbacks of SR-FTIR spectroscopy, the design principles of infrared beam setups and in-situ cells, as well as the in-situ measurement criteria are also discussed in detail. Lastly, the potential challenges and opportunities in this field are prudently stated. This review is expected to stimulate a broad interest in the material science and electrochemistry communities for exploring the dynamic mechanisms of prominent catalysis at the atomic/molecular level by using SR-based spectroscopy.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. J. N. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.  doi: 10.1038/nature11475

    2. [2]

      Sepulveda, N. A.; Jenkins, J. D.; Edington, A.; Mallapragada, D. S.; Lester, R. K. The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 2021, 6, 506-516.  doi: 10.1038/s41560-021-00796-8

    3. [3]

      Feng, Y.; Tao, L.; Zheng, Z.; Huang, H.; Lin, F. Upgrading agricultural biomass for sustainable energy storage: bioprocessing, electrochemistry, mechanism. Energy Storage Mater. 2020, 31, 274-309.  doi: 10.1016/j.ensm.2020.06.017

    4. [4]

      Kang, S.; Miao, R.; Guo, J.; Fu, J. Sustainable production of fuels and chemicals from biomass over niobium based catalysts: a review. Catal. Today 2021, 374, 61-76.  doi: 10.1016/j.cattod.2020.10.029

    5. [5]

      Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.  doi: 10.1038/nature11115

    6. [6]

      Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57-69.  doi: 10.1038/nmat4738

    7. [7]

      Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. -Y.; Su, D. J. S. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.  doi: 10.1126/science.aah6133

    8. [8]

      Zhou, W.; Su, H.; Wang, Z.; Yu, F.; Wang, W.; Chen, X.; Liu, Q. Self-synergistic cobalt catalysts with symbiotic metal single-atoms and nanoparticles for efficient oxygen reduction. J. Mater. Chem. A 2021, 9, 1127-1133.  doi: 10.1039/D0TA10267A

    9. [9]

      Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215-2264.  doi: 10.1039/C9CS00869A

    10. [10]

      Yang, H.; Han, X.; Douka, A. I.; Huang, L.; Gong, L.; Xia, C.; Park, H. S.; Xia, B. Y. Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2007602-2007630.  doi: 10.1002/adfm.202007602

    11. [11]

      Noguchi, H.; Okada, T.; Uosaki, K. Molecular structure at electrode/electrolyte solution interfaces related to electrocatalysis. Faraday Discuss. 2009, 140, 125-137.  doi: 10.1039/B803640C

    12. [12]

      Zhou, W.; Su, H.; Li, Y.; Liu, M.; Zhang, H.; Zhang, X.; Sun, X.; Xu, Y.; Liu, Q.; Wei, S. Identification of the evolving dynamics of coordination-unsaturated iron atomic active sites under reaction conditions. ACS Energy Lett. 2021, 6, 3359-3366.  doi: 10.1021/acsenergylett.1c01316

    13. [13]

      Yang, Y.; Luo, M.; Zhang, W.; Sun, Y.; Chen, X.; Guo, S. J. Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem 2018, 4, 2054-2083.  doi: 10.1016/j.chempr.2018.05.019

    14. [14]

      Cai, W.; Chen, R.; Yang, H.; Tao, H. B.; Wang, H. -Y.; Gao, J.; Liu, W.; Liu, S.; Hung, S. -F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: a case study of NiFe alloy. Nano Lett. 2020, 20, 4278-4285.  doi: 10.1021/acs.nanolett.0c00840

    15. [15]

      Heidary, N.; Ly, K. H.; Kornienko, N. J. N. L. Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectro-scopy. Nano Lett. 2019, 19, 4817-4826.  doi: 10.1021/acs.nanolett.9b01582

    16. [16]

      Ting, L. R. L.; Yeo, B. S Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide. Curr. Opin. Electrochem. 2018, 8, 126-134.  doi: 10.1016/j.coelec.2018.04.011

    17. [17]

      Deng, Y. F.; Dong, S. Y.; Li, Z. F.; Jiang, H.; Zhang, X. G.; Ji, X. L. Applications of conventional vibrational spectroscopic methods for batteries beyond Li-ion. Small Methods 2018, 2, 1700332-1700358.  doi: 10.1002/smtd.201700332

    18. [18]

      Zaera, F. Infrared and molecular beam studies of chemical reactions on solid surfaces. Int. Rev. Phys. Chem. 2002, 21, 433-471.  doi: 10.1080/01442350210156033

    19. [19]

      Li, Y.; Cheng, W.; Su, H.; Zhao, X.; He, J.; Liu, Q. Operando infrared spectroscopic insights into the dynamic evolution of liquid-solid (photo)electrochemical interfaces. Nano Energy 2020, 77, 105121-105133.  doi: 10.1016/j.nanoen.2020.105121

    20. [20]

      Zaera, F. New advances in the use of infrared absorption spectro-scopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 2014, 43, 7624-7663.  doi: 10.1039/C3CS60374A

    21. [21]

      Wang, H.; Zhou, Y. -W.; Cai, W. -B. Recent applications of in situ ATR-IR spectroscopy in interfacial electrochemistry. Curr. Opin. Electrochem. 2017, 1, 73-79.  doi: 10.1016/j.coelec.2017.01.008

    22. [22]

      Andanson, J. -M.; Baiker, A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy. Chem. Soc. Rev. 2010, 39, 4571-4584.  doi: 10.1039/b919544k

    23. [23]

      Hutter, E.; Assiongbon, K.; Fendler, J.; Roy, D. Fourier transform infrared spectroscopy using polarization modulation and polarization selective techniques for internal and external reflection geometries: investigation of self-assembled octadecylmercaptan on a thin gold film. J. Phys. Chem. B 2003, 107, 7812-7819.  doi: 10.1021/jp034910p

    24. [24]

      Petit, T.; Puskar, L. FTIR spectroscopy of nanodiamonds: methods and interpretation. Diamond Relat. Mater. 2018, 89, 52-66.  doi: 10.1016/j.diamond.2018.08.005

    25. [25]

      Duncan, W.; Williams, G. P. Infrared synchrotron radiation from electron storage rings. Appl. Opt. 1983, 22, 2914-2923.  doi: 10.1364/AO.22.002914

    26. [26]

      Singley, E.; Abo-Bakr, M.; Basov, D.; Feikes, J.; Guptasarma, P.; Holldack, K.; Hübers, H.; Kuske, P.; Martin, M. C.; Peatman, W. Measuring the Josephson plasma resonance in Bi2Sr2CaCu2O8 using intense coherent THz synchrotron radiation. Phys. Rev. B 2004, 69, 092512-092515.  doi: 10.1103/PhysRevB.69.092512

    27. [27]

      Hu, C. S.; Wang, X.; Qi, Z. M.; Li, C. X. The new infrared beamline at NSRL. Infrared Phys. Technol. 2020, 105, 103200-103204.  doi: 10.1016/j.infrared.2020.103200

    28. [28]

      Su, H.; Zhou, W.; Zhang, H.; Zhou, W.; Zhao, X.; Li, Y.; Liu, M.; Cheng, W.; Liu, Q. Dynamic evolution of solid-liquid electrochemical interfaces over single-atom active sites. J. Am. Chem. Soc. 2020, 142, 12306-12313.  doi: 10.1021/jacs.0c04231

    29. [29]

      Hirschmugl, C.; Williams, G. Signal-to-noise improvements with a new far-IR rapid scan Michelson interferometer. Rev. Sci. Instrum. 1995, 66, 1487-1488.  doi: 10.1063/1.1145949

    30. [30]

      Marcelli, A.; Cricenti, A.; Kwiatek, W. M.; Petibois, C. Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol. Adv. 2012, 30, 1390-1404.  doi: 10.1016/j.biotechadv.2012.02.012

    31. [31]

      Nichols, E. F. A study of the transmission spectra of certain substances in the infra-red. Phys. Rev. (Series I) 1893, 1, 1-18.  doi: 10.1103/PhysRevSeriesI.1.1

    32. [32]

      Coates, V. J.; Offner, A.; Siegler, E. Design and performance of an infrared microscope attachment. J. Opt. Soc. Am. 1953, 43, 984-989.  doi: 10.1364/JOSA.43.000984

    33. [33]

      Golden, W. G.; Saperstein, D. D. Phenomena, R. Fourier transform infrared reflection-absorption spectroscopy of surface species. J. Electron. Spectrosc. Relat. Phenom. 1983, 30, 43-50.  doi: 10.1016/0368-2048(83)85032-4

    34. [34]

      Sherma, J. Fourier transform infrared (FT-IR) spectrometry. J. AOAC Int. 2004, 87, 113A-118A.

    35. [35]

      Mattson, E. C.; Nasse, M. J.; Rak, M.; Gough, K. M.; Hirschmugl, C. J. Restoration and spectral recovery of mid-infrared chemical images. Anal. Chem. 2012, 84, 6173-6180.  doi: 10.1021/ac301080h

    36. [36]

      Greenler, R. G. Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 1966, 44, 310-315.  doi: 10.1063/1.1726462

    37. [37]

      Roy, P.; Brubach, J. -B.; Calvani, P.; DeMarzi, G.; Filabozzi, A.; Gerschel, A.; Giura, P.; Lupi, S.; Marcouillé, O.; Mermet, A. Infrared synchrotron radiation: from the production to the spectroscopic and microscopic applications. Nucl. Instrum. Methods Phys. Res., Sect. A 2001, 467, 426-436.

    38. [38]

      Hirschmugl, C. Infrared synchrotron radiation instrumentation and applications. Nucl. Instrum. Methods Phys. Res. Sect. A 1992, 319, 245-249.  doi: 10.1016/0168-9002(92)90561-H

    39. [39]

      Stavitski, E.; Kox, M. H.; Swart, I.; de Groot, F. M.; Weckhuysen, B. M. In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals. Angew. Chem. Int. Ed. 2008, 120, 3599-3603.  doi: 10.1002/ange.200705562

    40. [40]

      Buurmans, I. L.; Soulimani, F.; Ruiz-Martínez, J.; Van Der Bij, H. E.; Weckhuysen, B. M. Structure and acidity of individual fluid catalytic cracking catalyst particles studied by synchrotron-based infrared micro-spectro-scopy. Microporous Mesoporous Mater. 2013, 166, 86-92.  doi: 10.1016/j.micromeso.2012.08.007

    41. [41]

      Dumas, P.; Jamin, N.; Teillaud, J.; Miller, L.; Beccard, B. Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss. 2004, 126, 289-302.  doi: 10.1039/b305065c

    42. [42]

      Kovar, M.; Kasza, R.; Griffiths, K.; Norton, P.; Williams, G.; Van Campen, D. Synchrotron radiation FTIR spectroscopic studies of water on Ni(110). Surf. Rev. Lett. 1998, 5, 589-598.  doi: 10.1142/S0218625X98000979

    43. [43]

      Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521-2531.  doi: 10.1021/acscatal.8b04937

    44. [44]

      Carr, G. Resolution limits for infrared microspectroscopy explored with synchrotron radiation. Rev. Sci. Instrum. 2001, 72, 1613-1619.  doi: 10.1063/1.1347965

    45. [45]

      Levenson, E.; Lerch, P.; Martin, M. C. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared. J. Synchrotron Radiat. 2008, 15, 323-328.  doi: 10.1107/S0909049508004524

    46. [46]

      Lobo, R.; LaVeigne, J.; Reitze, D.; Tanner, D.; Carr, G. Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation. Rev. Sci. Instrum. 2002, 73, 1-10.  doi: 10.1063/1.1416111

    47. [47]

      Zhang, Y.; Zhang, H.; Liu, A.; Chen, C.; Song, W.; Zhao, J. Rate-limiting O-O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 2018, 140, 3264-3269.  doi: 10.1021/jacs.7b10979

    48. [48]

      Chittur, K. K. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 1998, 19, 357-369.  doi: 10.1016/S0142-9612(97)00223-8

    49. [49]

      Martin, M. C.; Schade, U.; Lerch, P.; Dumas, P. Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. TrAC, Trends Anal. Chem. 2010, 29, 453-463.  doi: 10.1016/j.trac.2010.03.002

    50. [50]

      Dumas, P.; Miller, L.; Tobin, M. Challenges in biology and medicine with synchrotron infrared light. Acta Phys. Pol. 2009, 115, 446-454.  doi: 10.12693/APhysPolA.115.446

    51. [51]

      Eischens, R.; Pliskin, W. The infrared spectra of adsorbed molecules. Adv. Catal. 1958, 10, 1-56.

    52. [52]

      Willey, R. Fourier transform infrared spectrophotometer for transmittance and diffuse reflectance measurements. Appl. Spectrosc. 1976, 30, 593-601.  doi: 10.1366/000370276774456642

    53. [53]

      Mudunkotuwa, I. A.; Al Minshid, A.; Grassian, V. H. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst 2014, 139, 870-881.  doi: 10.1039/C3AN01684F

    54. [54]

      Hoffmann, F. Infrared reflection-absorption adsorbed molecules spectroscopy. Surf. Sci. Rep. 1983, 3, 107-192.  doi: 10.1016/0167-5729(83)90001-8

    55. [55]

      Miki, A.; Ye, S.; Osawa, M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. 2002, 1500-1501.

    56. [56]

      Nayak, S.; McPherson, I. J.; Vincent, K. A. Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy. Angew. Chem. Int. Ed. 2018, 57, 12855-12858.  doi: 10.1002/anie.201804978

    57. [57]

      Zaera, F. New advances in the use of infrared absorption spectro-scopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 2014, 43, 7624-7663.  doi: 10.1039/C3CS60374A

    58. [58]

      Ortiz-Hernandez, I.; Williams, C. T. In situ investigation of solid-liquid catalytic interfaces by attenuated total reflection infrared spectroscopy. Langmuir 2003, 19, 2956-2962.  doi: 10.1021/la020799n

    59. [59]

      Kan, B. -C.; Boo, J. -H.; Lee, I.; Zaera, F. Thermal chemistry of tetrakis (ethylmethylamido) titanium on Si (100) surfaces. J. Phys. Chem. A 2009, 113, 3946-3954.  doi: 10.1021/jp8102172

    60. [60]

      Kaim, W.; Fiedler, J. Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 2009, 38, 3373-3382.  doi: 10.1039/b504286k

    61. [61]

      Cheng, W.; Zhao, X.; Su, H.; Tang, F.; Che, W.; Zhang, H.; Liu, Q. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115-122.  doi: 10.1038/s41560-018-0308-8

    62. [62]

      Lv, C.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.; Lee, C.; Liu, D.; Li, S.; Liu, J.; Song, L.; Chen, G.; Yan, Q.; Yu, G. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868-876.  doi: 10.1038/s41893-021-00741-3

    63. [63]

      Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 1-10.  doi: 10.1038/s41467-019-13993-7

    64. [64]

      Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102-109.  doi: 10.1016/j.esci.2021.12.007

    65. [65]

      Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-2086.  doi: 10.1039/C4CS00470A

    66. [66]

      Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342-345.  doi: 10.1126/science.1185372

    67. [67]

      Zhang, X.; Sun, X.; Li, Y.; Hu, F.; Xu, Y.; Tian, J.; Zhang, H.; Liu, Q.; Su, H.; Wei, S. Reduced interfacial tension on ultrathin NiCr-LDH nanosheet arrays for efficient electrocatalytic water oxidation. J. Mater. Chem. A 2021, 9, 16706-16712.  doi: 10.1039/D1TA03863J

    68. [68]

      Gloag, L.; Benedetti, T. M.; Cheong, S.; Li, Y.; Chan, X. H.; Lacroix, L. M.; Chang, S. L. Y.; Arenal, R.; Florea, I.; Barron, H.; Barnard, A. S.; Henning, A. M.; Zhao, C.; Schuhmann, W.; Gooding, J. J.; Tilley, R. D. Three-dimensional branched and faceted gold-ruthenium nanoparticles: using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 2018, 57, 10241-10245.  doi: 10.1002/anie.201806300

    69. [69]

      Su, H.; Zhao, X.; Cheng, W.; Zhang, H.; Li, Y.; Zhou, W.; Liu, M.; Liu, Q. Hetero-N-coordinated Co single sites with high turnover frequency for efficient electrocatalytic oxygen evolution in an acidic medium. ACS Energy Lett. 2019, 4, 1816-1822.  doi: 10.1021/acsenergylett.9b01129

    70. [70]

      Lin, C.; Li, J. -L.; Li, X.; Yang, S.; Luo, W.; Zhang, Y.; Kim, S. -H.; Kim, D. -H.; Shinde, S. S.; Li, Y. -F.; Liu, Z. -P.; Jiang, Z.; Lee, J. -H. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012-1023.  doi: 10.1038/s41929-021-00703-0

    71. [71]

      Zhao, X.; Su, H.; Cheng, W.; Zhang, H.; Che, W.; Tang, F.; Liu, Q. Operando insight into the oxygen evolution kinetics on the metal-free carbon-based electrocatalyst in an acidic solution. ACS Appl. Mater. Interfaces 2019, 11, 34854-34861.  doi: 10.1021/acsami.9b09315

    72. [72]

      Cao, L.; Luo, Q.; Chen, J.; Wang, L.; Lin, Y.; Wang, H.; Liu, X.; Shen, X.; Zhang, W.; Liu, W.; Qi, Z.; Jiang, Z.; Yang, J.; Yao, T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849-4857.  doi: 10.1038/s41467-019-12886-z

    73. [73]

      Su, H.; Zhou, W.; Zhou, W.; Li, Y.; Zheng, L.; Zhang, H.; Liu, M.; Zhang, X.; Sun, X.; Xu, Y.; Hu, F.; Zhang, J.; Hu, T.; Liu, Q.; Wei, S. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118-6126.  doi: 10.1038/s41467-021-26416-3

    74. [74]

      Zhang, Q.; Guan, J. Applications of atomically dispersed oxygen reduction catalysts in fuel cells and zinc-air batteries. Energy Environ. Mater. 2020, 4, 307-335.
       

    75. [75]

      Zhou, W.; Su, H.; Shen, S.; Li, Y.; Zhang, H.; Liu, M.; Zhao, X.; Cheng, W.; Yao, P.; Liu, Q. Co-Ni nanoalloy-organic framework electrocatalysts with ultrahigh electron transfer kinetics for efficient oxygen reduction. ACS Sustainable Chem. Eng. 2020, 8, 6898-6904.  doi: 10.1021/acssuschemeng.0c02271

    76. [76]

      Zhou, Z.; Kong, Y.; Tan, H.; Huang, Q.; Wang, C.; Pei, Z.; Wang, H.; Liu, Y.; Wang, Y.; Li, S.; Liao, X.; Yan, W.; Zhao, S. Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 2022, e2106541.

    77. [77]

      Liu, M.; Li, Y.; Qi, Z.; Su, H.; Cheng, W.; Zhou, W.; Zhang, H.; Sun, X.; Zhang, X.; Xu, Y.; Jiang, Y.; Liu, Q.; Wei, S. Self-nanocavity-confined halogen anions boosting the high selectivity of the two-electron oxygen reduction pathway over Ni-based MOFs. J. Phys. Chem. Lett. 2021, 12, 8706-8712.  doi: 10.1021/acs.jpclett.1c01981

    78. [78]

      Ke, K.; Wang, G.; Cao, D.; Wang, G. J. E. Recent advances in the electrooxidation of urea for direct urea fuel cell and urea electrolysis. Top. Curr. Chem. 2020, 41-78.

    79. [79]

      Sayed, E. T.; Eisa, T.; Mohamed, H. O.; Abdelkareem, M. A.; Allagui, A.; Alawadhi, H.; Chae, K. -J. Direct urea fuel cells: challenges and opportunities. J. Power Sources 2019, 417, 159-175.  doi: 10.1016/j.jpowsour.2018.12.024

    80. [80]

      Geng, S. -K.; Zheng, Y.; Li, S. -Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. -B.; Jaroniec, M.; Chen, P.; Liu, Q. -H.; Qiao, S. -Z. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904-912.  doi: 10.1038/s41560-021-00899-2

    81. [81]

      Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.  doi: 10.1126/science.345.6197.610

    82. [82]

      Giddey, S.; Badwal, S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576-14594.  doi: 10.1016/j.ijhydene.2013.09.054

    83. [83]

      Tan, H.; Ji, Q.; Wang, C.; Duan, H.; Kong, Y.; Wang, Y.; Feng, S.; Lv, L.; Hu, F.; Zhang, W.; Chu, W.; Sun, Z.; Yan, W. Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Res. 2021, 15, 3010-3016.

    84. [84]

      Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; Yan, D.; Xie, C.; Zou, Y.; Wang, Y.; Chen, R.; Huo, J.; Li, Y.; Cheng, J.; Su, H.; Zhao, X.; Cheng, W.; Liu, Q.; Lin, H.; Luo, J.; Chen, J.; Dong, M.; Cheng, K.; Li, C.; Wang, S. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717-724.  doi: 10.1038/s41557-020-0481-9

    85. [85]

      Li, C.; Baek, J. -B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 2019, 5, 31-40.

    86. [86]

      Mahmood, J.; Li, F.; Jung, S. -M.; Okyay, M. S.; Ahmad, I.; Kim, S. -J.; Park, N.; Jeong, H. Y.; Baek, J. -B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotech. 2017, 12, 441-446.  doi: 10.1038/nnano.2016.304

    87. [87]

      Li, Y.; He, J.; Cheng, W.; Su, H.; Li, C.; Zhang, H.; Liu, M.; Zhou, W.; Chen, X.; Liu, Q. High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Sci. China Mater. 2021, 64, 2467-2476.  doi: 10.1007/s40843-020-1656-0

    88. [88]

      Zhang, H.; Su, H.; Soldatov, M. A.; Li, Y.; Zhao, X.; Liu, M.; Zhou, W.; Zhang, X.; Sun, X.; Xu, Y.; Yao, P.; Wei, S.; Liu, Q. Dynamic CoRu bond shrinkage at atomically dispersed Ru sites for alkaline hydrogen evolution reaction. Small 2021, 17, 2105231-2105237.  doi: 10.1002/smll.202105231

    89. [89]

      He, Q.; Zhou, Y.; Shou, H.; Wang, X.; Zhang, P.; Xu, W.; Qiao, S.; Wu, C.; Liu, H.; Liu, D.; Chen, S.; Long, R.; Qi, Z.; Wu, X.; Song, L. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, e2110604.

    90. [90]

      Cao, D.; Sheng, B.; Qi, Z.; Xu, W.; Chen, S.; Moses, O. A.; Long, R.; Xiong, Y.; Wu, X.; Song, L. Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Appl. Catal., B 2021, 298, 120559-120566.  doi: 10.1016/j.apcatb.2021.120559

    91. [91]

      Li, N.; Tan, H.; Ding, X.; Duan, H.; Hu, W.; Li, G.; Ji, Q.; Lu, Y.; Wang, Y.; Hu, F.; Wang, C.; Cheng, W.; Sun, Z.; Yan, W. Phase-mediated robust interfacial electron-coupling over core-shell Co@carbon towards superior overall water splitting. Appl. Catal., B 2020, 266, 118621-118627.  doi: 10.1016/j.apcatb.2020.118621

  • 加载中
    1. [1]

      Nong Yue HE Chun YANG Jian Xin TANG Peng Feng XIAO Hong CHEN . An Empiric Linear Formula between the Internal Tetrahedron Symmetric Stretch Frequency and the Al Content in the Framework of KL Molecular Sieves. Chinese Chemical Letters, 2003, 14(8): 870-873.

    2. [2]

      Lan Dong LI Ji Xin CHEN Shu Juan ZHANG Nai Jia GUANIn-situ Synthesis of Binderless ZSM-5 Zeolitic Coatings on Aluminum. Chinese Chemical Letters, 2005, 16(2): 253-256.

    3. [3]

      Lei XieChaoqin HuangZhaofeng LiangHongbing WangZheng JiangFei Song . In-Situ HP-STM and Operando EC-STM Studies of Heterogeneous Catalysis at Interfaces. Chinese Journal of Structural Chemistry, 2022, 41(10): 2210029-2210044. doi: 10.14102/j.cnki.0254-5861.2022-0136

    4. [4]

      Yue-Jiao ZHANGPetar M RADJENOVICJian-Feng LI . Shell-isolated Nanoparticle-enhanced Raman Spectroscopy towards In-Situ Investigating of Interfacial Structure. Chinese Journal of Structural Chemistry, 2020, 39(8): 1372-1376. doi: 10.14102/j.cnki.0254–5861.2011–2918

    5. [5]

      XU Guoguang WANG Min WANG Jian LIN Hongzhen WU Yang WEI Yang ZHANG YuegangIn-situ Electrochemical Characterization Methodology. Chinese Journal of Catalysis, 2019, 40(s1): 187-199.

    6. [6]

      Ling Ling WU Jin LUO Zhong Hua LIN . Spectroelectrochemical Studies on Poly-o-phenylenediamine 1. In-situ Resonance Raman Spectroscopy. Chinese Chemical Letters, 1997, 8(2): 171-174.

    7. [7]

      Guorui WuWenshuai LiWeijun DuAiqin YueJinzhong ZhaoDingbin LiuIn-situ monitoring of nitrile-bearing pesticide residues by background-free surface-enhanced Raman spectroscopy. Chinese Chemical Letters, 2022, 33(1): 519-522. doi: 10.1016/j.cclet.2021.06.051

    8. [8]

      Ji Zhong LUO Xiao Ping ZHOU Zi Sheng CHAO Hu Lin WAN . Study of Binary Rare-Earth Oxyfluoride for ODE Reaction and Their XRD &In-Situ Raman Characterization. Chinese Chemical Letters, 1996, 7(10): 954-955.

    9. [9]

      LI Zuo-pengSHANG Jian-pengFU WeiYANG Xiao-mengLIU WeiZENG Jian-huangGUO YongFeng FENGIn-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1083-1089.

    10. [10]

      HAN JunLIANG Yang-shuoZHAO BoXIONG Zi-jiangQIN Lin-boCHEN Wang-shengIn-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1356-1364.

    11. [11]

      Wenbo LiYucen LiWei ZhangDifeng YinYa ChengWei ChuMing Hu . Size-controlled flow synthesis of metal-organic frameworks crystals monitored by in-situ ultraviolet–visible absorption spectroscopy. Chinese Chemical Letters, 2021, 32(3): 1131-1134. doi: 10.1016/j.cclet.2020.09.039

    12. [12]

      HAN Yong ZHANG Hui LIU Zhi . Ambient-Pressure X-ray Photoelectron Spectroscopy in Catalysis. Chinese Journal of Catalysis, 2019, 40(s1): 200-208.

    13. [13]

      Guojun Lan Yaping Zhou Hangjia Shen Haodong Tang Ying Li . Formation mechanism of highly dispersed semi-embedded ruthenium nanoparticles in porous carbon matrix determined by in situ temperature-programmed infrared spectroscopy. Chinese Journal of Catalysis, 2018, 39(1): 146-156. doi: 10.1016/S1872-2067(17)62958-9

    14. [14]

      LIU Kang-YuZHENG Ting-TingZHAO Yin-HuaCHEN Yan-YueWU Pei . Recycling Terephthalic Acid from Waste PET Beverage Bottles. Chinese Journal of Chemical Education, 2015, 36(14): 28-30. doi: 10.13884/j.1003-3807hxjy.2014090132

    15. [15]

      CAI Kai-CongDU Fen-FenLIU JiaLIU Ya-NanLIN Hui-QiuSHEN Yan-FengLIN Shen . Application of Gaussian Software in Infrared Spectroscopy Teaching. Chinese Journal of Chemical Education, 2014, 35(8): 50-53.

    16. [16]

      YANG Zhao-XiaZHANG You-YuYANG QinYAO Shou-Zhuo . Spectroscopic Study on the Interaction of Furbenicillin Sodium with Bovine Serum Albumin. Chinese Journal of Applied Chemistry, 2007, 24(8): 858-862.

    17. [17]

      CHEN WenWANG Cun-WenWANG Wei-GuoWU Yuan-XinCHI Ru-AnLI Shi-RongXU Ke-YangHU PingMA Lian-Jiao . Biodiesel from Rapeseed via Extraction and in-situ Transesterification in Supercritical Methanol. Chinese Journal of Applied Chemistry, 2006, 23(12): 1332-1335.

    18. [18]

      WU Yan-PingCHEN Song-TaoLU Wei-Qi . ATR-FTIR Study on Ionic Solvation and Ion Association of Lithium Nitrate in N,N-dimethylformamide. Chinese Journal of Applied Chemistry, 2004, 21(11): 1174-1177.

    19. [19]

      Wang WeiLi LaimingXi Shiquan . STUDY ON MECHANISM OF STRUCTURAL TRANSITIONS OF LAURYLAMMONIUM CHLORIDE BY INFRARED SPECTROSCOPY. Chinese Journal of Applied Chemistry, 1992, 9(5): 25-28.

    20. [20]

      AI Lun-HongJIANG Jing . Low-temperature Synthesis,Spectral Characterization and Magnetic Properties of CoFe2O4 Nanocrystals. Chinese Journal of Applied Chemistry, 2010, 27(1): 78-81.

Metrics
  • PDF Downloads(6)
  • Abstract views(111)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return