Citation: Zuhao Zhang, Xiaoyan Xie, Huixian Xie, Xiaokai Ding, Jiaxiang Cui, Chenyu Liu, Dong Luo, Zhan Lin. Dual-site Doping to Enhance Oxygen Redox and Structural Stability of Li-rich Layered Oxides[J]. Chinese Journal of Structural Chemistry, ;2022, 41(4): 220406. doi: 10.14102/j.cnki.0254-5861.2022-0066 shu

Dual-site Doping to Enhance Oxygen Redox and Structural Stability of Li-rich Layered Oxides

Figures(5)

  • Cobalt-free Li-rich layered oxides (LLOs) such as Li1.2Mn0.6Ni0.2O2 have attracted extensive attention owing to their high specific capacity and low cost. Nonetheless, numerous problems such as continuous voltage fading and capacity decay have become stumbling blocks in its commercial application. In this study, we propose an effective dual-site doping strategy by choosing Mo as the cation and F as the anion to enhance the capacity and cycling performance. The research demonstrates that the cycling stability of LLOs enhances with the doping ratio of Mo, and their capacity increases with the doping ratio of F. It is because Mo as a pillar enhances the structural stability and F doping is conducive to the activation of Li2MnO3. What's more, dual-site doping also promotes the diffusion of Li+ and reduces the internal resistance of the electrode. Due to these improvements, the 5F3M sample still maintains a discharge capacity of 190.98 mAh g-1 after 100 cycles at 200 mA g-1, which is much higher than 165.29 mAh g-1 of the Pristine sample. This discovery provides a new way to develop advanced layered oxide cathodes for both Na- and Li-ion batteries.
  • 加载中
    1. [1]

      Andre, D.; Kim, S. J.; Lamp, P.; Lux, S. F.; Maglia, F.; Paschos, O.; Stiaszny, B. Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 2015, 3, 6709–6732.

    2. [2]

      Lin, Z.; Liu, T. F.; Ai, X. P.; Liang, C. D. Aligning academia and industry for unified battery performance metrics. Nat. Commun. 2018, 9, 1–5.

    3. [3]

      Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1–9.

    4. [4]

      Zheng, Z.; Wang, M. Y.; Yang, L. Y.; Hu, Z. X.; Chen, Z. F.; Pan, F. Thermodynamically revealing the essence of order and disorder structures in layered cathode materials. Chin. J. Struct. Chem. 2019, 38, 2020–2026.

    5. [5]

      Liu, T. C.; Pan, F.; Khalil, A. Prospect and reality of concentration gradient cathode of lithium-ion batteries. Chin. J. Struct. Chem. 2020, 39, 11–15.

    6. [6]

      Lu, Z. H.; Dahn, J. R. Understanding the anomalous capacity of Li/Li [NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 2002, 149, A815–A822.

    7. [7]

      Song, B. H.; Liu, Z. W.; Lai, M. O.; Lu, L. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys. Chem. Chem. Phys. 2012, 14, 12875–12883.  doi: 10.1039/c2cp42068f

    8. [8]

      Liu, W.; Oh, P.; Liu, X. E.; Myeong, S.; Cho, W.; Cho, J. Countering voltage decay and capacity fading of lithium-rich cathode material at 60 ℃ by hybrid surface protection layers. Adv. Energy Mater. 2015, 5, 1500274.

    9. [9]

      Yin, Z. W.; Li, J. T.; Huang, L.; Pan, F.; Sun, S. G. High-capacity Li-rich Mn-based cathodes for lithium-ion batteries. Chin. J. Struct. Chem. 2020, 39, 20–25.

    10. [10]

      Yu, Y. M.; Liu, J. J.; Qi, R.; Zuo, C. J.; Zhao, W. G.; Lu, J. L.; Zhang, M. J.; Pan, F. Interface-reconstruction forming bifunctional (LixTM1–x)O rock-salt shell for enhanced cyclability in Li-rich layered oxide. Chin. J. Struct. Chem. 2020, 39, 1363–1371.

    11. [11]

      Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 2016, 8, 692–697.

    12. [12]

      Zhu, Z.; Yu, D. W.; Yang, Y.; Su, C.; Huang, Y. M.; Dong, Y. H.; Waluyo, I.; Wang, B.; Hunt, A.; Yao, X. H.; Lee, J.; Xue, W. J.; Li, J. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 2019, 4, 1049–1058.

    13. [13]

      Yu, H. J.; So, Y. G.; Ren, Y.; Wu, T. H.; Guo, G. C.; Xiao, R. J.; Lu, J.; Li, H.; Yang, Y. B.; Zhou, H. S.; Wang, R. Z.; Amine, K.; Ikuhara, Y. Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries. J. Am. Chem. Soc. 2018, 140, 15279–15289.

    14. [14]

      Kim, S. Y.; Park, C. S.; Hosseini, S.; Lampert, J.; Kim, Y. J.; Nazar, L. F. Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer. Adv. Energy Mater. 2021, 11, 2100552.

    15. [15]

      Peng, J. M.; Li, Y.; Chen, Z. Q.; Liang, G. M.; Hu, S. J.; Zhou, T. F.; Zheng, F. H.; Pan, Q. C.; Wang, H. Q.; Li, Q. Y.; Liu, J. W.; Guo, Z. P. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide. ACS Nano 2021, 15, 11607–11618.

    16. [16]

      Xu, C. Y.; Li, J. L.; Sun, J.; Zhang, W. Z.; Ji, B. M. Li-rich layered oxide single crystal with Na doping as a high-performance cathode for Li-ion batteries. J. Alloys Compd. 2021, 895, 162613.

    17. [17]

      Singh, A. N.; Kim, M. H.; Meena, A.; Wi, T. U.; Lee, H. W.; Kim, K. S. Na/Al co-doped layered cathode with defects as bifunctional electrocatalyst for high-performance Li-ion battery and oxygen evolution reaction. Small 2021, 17, 2005605.

    18. [18]

      Liu, J. H.; Chen, H. Y.; Xie, J. N.; Sun, Z. Q.; Wu, N. N.; Wu, B. R. Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes. J. Power Sources 2014, 251, 208–214.

    19. [19]

      Zhang, B. K.; Tan, R.; Yang, L. Y.; Zheng, J. X.; Zhang, K. C.; Mo, S. J.; Lin, Z.; Pan, F. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 2018, 10, 139–159.

    20. [20]

      Liu, S.; Liu, Z. P.; Shen, X.; Wang, X. L.; Liao, S. C.; Yu, R. C.; Wang, Z. X.; Hu, Z. W.; Chen, C. T.; Yu, X. Q.; Yang, X. Q.; Chen, L. Q. Li–Ti cation mixing enhanced structural and performance stability of Li-rich layered oxide. Adv. Energy Mater. 2019, 9, 1901530.

    21. [21]

      Wang, T. D.; Zhang, C. X.; Li, S. W.; Shen, X.; Zhou, L. J.; Huang, Q.; Liang, C. P.; Wang, Z. X.; Wang, X. F.; Wei, W. F. Regulating anion redox and cation migration to enhance the structural stability of Li-rich layered oxides. ACS Appl. Mater. Interfaces 2021, 13, 12159–12168.

    22. [22]

      Julien, C.; Massot, M. Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater. Sci. Eng. B 2003, 97, 217–230.

    23. [23]

      Zhao, S. Y.; Zhu, Y. T.; Qian, Y. C.; Wang, N. N.; Zhao, M.; Yao, J. L.; Xu, Y. H. Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Mater. Lett. 2020, 265, 127418.

    24. [24]

      Amalraj, S. F.; Burlaka, L.; Julien, C. M.; Mauger, A.; Kovacheva, D.; Talianker, M.; Markovsky, B.; Aurbach, D. Phase transitions in Li2MnO3 electrodes at various states-of-charge. Electrochim. Acta 2014, 123, 395–404.

    25. [25]

      Inaba, M.; Iriyama, Y.; Ogumi, Z.; Todzuka, Y.; Tasaka, A. Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. J. Raman Spectrosc. 1997, 28, 613–617.

    26. [26]

      Xu, Y. B.; Zhang, M. X.; Yi, L.; Liang, K. Fe3+ and PO43– co-doped Li-rich Li1.20Mn0.56Ni0.16Co0.08O2 as cathode with outstanding structural stability for lithium-ion battery. J. Alloys Compd. 2021, 865, 158899.

    27. [27]

      Shaju, K.; Rao, G. S.; Chowdari, B. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 2002, 48, 145–151.

    28. [28]

      Shen, C. H.; Wang, Q.; Fu, F.; Huang, L.; Lin, Z.; Shen, S. Y.; Su, H.; Zheng, X. M.; Xu, B. B.; Li, J. T.; Sun, S. G. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: in situ XRD characterization. ACS Appl. Mater. Interfaces 2014, 6, 5516–5524.

    29. [29]

      Rong, X. H.; Liu, J.; Hu, E. Y.; Liu, Y. J.; Wang, Y.; Wu, J. P.; Yu, X. Q.; Page, K.; Hu, Y. S.; Yang, W. L.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang. X. J. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2018, 2, 125–140.

    30. [30]

      Foix, D.; Sathiya, M.; McCalla, E.; Tarascon, J. M.; Gonbeau, D. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J. Phys. Chem. C 2016, 120, 862–874.

    31. [31]

      Yi, T. F.; Shi, L. N.; Han, X.; Wang, F. F.; Zhu, Y. R.; Xie, Y. Approaching high‐performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets. Energy Environ. Mater. 2021, 4, 586–595.

    32. [32]

      Yi, T. F.; Qiu, L. Y.; Mei, J.; Qi, S. Y.; Cui, P.; Luo, S. H.; Zhu, Y. R.; Xie, Y.; He, Y. B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 2020, 65, 546–556.

    33. [33]

      Ivanova, S.; Zhecheva, E.; Stoyanova, R.; Nihtianova, D.; Wegner, S.; Tzvetkova, P.; Simova, S. High-voltage LiNi1/2Mn3/2O4 spinel: cationic order and particle size distribution. J. Phys. Chem. C 2011, 115, 25170–25182.

    34. [34]

      Wang, D. H.; Wang, L. F.; Liang, G. J.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, J. B.; Zhi, C. Y. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 2019, 13, 10643–10652.

    35. [35]

      Tan, Q. Y.; Li, X. T.; Zhang, B.; Chen, X.; Tian, Y. W.; Wan, H. Z.; Zhang, L. S; Miao, L.; Wang, C.; Gan, Y.; Jiang, J. J.; Wang, Y.; Wang, H. Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 2020, 10, 2001050.

    36. [36]

      Luo, D.; Ding, X. K.; Fan, J. M.; Zhang, Z. H.; Liu, P. Z.; Yang, X. H.; Guo, J. J.; Sun, S. H.; Lin, Z. Accurate control of initial Coulombic efficiency for lithium-rich manganese-based layered oxides by surface multicomponent integration. Angew. Chem. Int. Ed. 2020, 132, 23261–23266.

    37. [37]

      Yang, J. C.; Chen, Y. X.; Li, Y. J.; Xi, X. M.; Zheng, J. C.; Zhu, Y. L.; Xiong, Y. K.; Liu, S. W. Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta–Mo dual doping. ACS App. Mater. Interfaces 2021, 13, 25981–25992.

    38. [38]

      Liu, S. Y.; Dang, Z. Y.; Liu, D.; Zhang, C. C.; Huang, T.; Yu, A. S. Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. J. Power Sources 2018, 396, 288–296.

    39. [39]

      Sun, Y.; Zan, L.; Zhang, Y. X. Enhanced electrochemical performances of Li2MnO3 cathode materials via adjusting oxygen vacancies content for lithium-ion batteries. Appl. Surf. Sci. 2019, 483, 270–277.

    40. [40]

      Luo, D.; Ding, X. K.; Hao, X. D.; Xie, H. X.; Cui, J. X.; Liu, P. Z.; Yang, X. H.; Zhang, Z. H.; Guo, J. J.; Sun, S. H.; Lin, Z. Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes. ACS Energy Lett. 2021, 6, 2755–2764.

    41. [41]

      Wen, X. F.; Liang, K.; Tian, L. Y.; Shi, K. Y.; Zheng, J. S. Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries. Electrochim. Acta 2018, 260, 549–556.

    42. [42]

      Ding, X. K.; Luo, D.; Cui, J. X.; Xie, H. X.; Ren, Q. Q.; Lin, Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem. Int. Ed. 2020, 132, 7852–7856.

    43. [43]

      Li, B. Y.; Li, G. S.; Zhang, D.; Fan, J. M.; Feng, T.; Li, L. P. Understanding de-protonation induced formation of spinel phase in Li-rich layered oxides for improved rate performance. Chin. J. Struct. Chem. 2018, 37, 1723–1736.

    44. [44]

      Sun, H. H.; Kim, U. H.; Park, J. H.; Park, S. W.; Seo, D. H.; Heller, A.; Mullins, C. B.; Yoon, C. S.; Sun, Y. K. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat. Commun. 2021, 12, 1–11.

    45. [45]

      Su, Y. F.; Yang, Y. Q.; Chen, L.; Lu, Y.; Bao, L. Y.; Chen, G.; Yang, Z. R.; Zhang, Q. Y.; Wang, J.; Chen, R. J.; Chen, S.; Wu, F. Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase. Electrochim. Acta 2018, 292, 217–226.

    46. [46]

      Li, X.; Qiao, Y.; Guo, S. H.; Xu, Z. M.; Zhu, H.; Zhang, X. Y.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. S. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 2018, 30, 1705197.

    47. [47]

      Zheng, H. F.; Zhang, C. Y.; Zhang, Y. G.; Lin, L.; Liu, P. F.; Wang, L. S.; Wei, Q. L.; Lin, J.; Sa, B. S.; Xie, Q. S.; Peng, D. L. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance. Adv. Funct. Mater. 2021, 31, 2100783.

    48. [48]

      Luo, D.; Fang, S. H.; Tian, Q. H.; Qu, L.; Yang, L.; Hirano, S. I. Discovery of a surface protective layer: a new insight into countering capacity and voltage degradation for high-energy lithium-ion batteries. Nano Energy 2016, 21, 198–208.

    49. [49]

      Zang, Y.; Ding, C. X.; Wang, X. C.; Wen, Z. Y.; Chen, C. H. Molybdenum-doped lithium-rich layered-structured cathode material Li1.2Ni0.2Mn0.6O2 with high specific capacity and improved rate performance. Electrochim. Acta 2015, 168, 234–239.

    50. [50]

      Song, J. H.; Kapylou, A.; Choi, H. S.; Yu, B. Y.; Matulevich, E.; Kang, S. H. Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping. J. Power Sources 2016, 313, 65–72.
       

    51. [51]

      Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 124, 1569–1578.

    52. [52]

      Yu, C. Y.; Dong, L.; Zhang, Y. X.; Du, K.; Gao, M. M.; Zhao, H. L.; Bai, Y. Promoting electrochemical performances of LiNi0.5Mn1.5O4 cathode via YF3 surface coating. Solid State Ion. 2020, 357, 115464.

  • 加载中
    1. [1]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    4. [4]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    5. [5]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    12. [12]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    13. [13]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    14. [14]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    15. [15]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    16. [16]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    17. [17]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    18. [18]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    19. [19]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(11)
  • Abstract views(510)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return