Citation: Jianze Xiao, Fu Zhihua, Guane Wang, Xiaoliang Ye, Gang Xu. Atomically Thin 2D TiO2 Nanosheets with Ligand Modified Surface for Ultra-sensitive Humidity Sensor[J]. Chinese Journal of Structural Chemistry, ;2022, 41(4): 220405. doi: 10.14102/j.cnki.0254-5861.2022-0046 shu

Atomically Thin 2D TiO2 Nanosheets with Ligand Modified Surface for Ultra-sensitive Humidity Sensor

Figures(5)

  • As a kind of two-dimensional (2D) nanostructured materials, metal oxide nanosheets (MONS) are attractive and promising humidity sensing materials due to their considerable surface area, good charge carrier transportation, and designable surface functional groups properties. Nevertheless, the ultra-thin MONS modified with active functional groups for humidity sensing are still rare. As a proof of concept, the atomically thin TiO2 nanosheets with high surface area and electron-donating amino groups are prepared by a structure-maintained post-ligand modification strategy. The fabricated TiO2-based sensors demonstrate superior humidity sensing performance with high response, short response time, narrow hysteresis, and ultra-low theoretical limit of detection of about 15 ppm. Additionally, the possible mechanism is proposed from the AC complex impedance measurements and DC instantaneous reverse polarity experiments. This work provides a possible path for developing the high-performance 2D nanostructured metal oxides-based humidity materials through the surface chemical method.
  • 加载中
    1. [1]

      Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N. E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033.  doi: 10.1007/s12274-016-1389-y

    2. [2]

      Yao, S.; Myers, A.; Malhotra, A.; Lin, F.; Bozkurt, A.; Muth, J. F.; Zhu, Y. A wearable hydration sensor with conformal nanowire electrodes. Adv. Healthcare Mater. 2017, 6, 1601159.  doi: 10.1002/adhm.201601159

    3. [3]

      Wang, X.; Xiong, Z.; Liu, Z.; Zhang, T. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 2015, 27, 1370–1375.  doi: 10.1002/adma.201404069

    4. [4]

      Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M.; Chen, P.; Wang, S.; Shi, D.; Sun, Q.; Zhang, G. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.  doi: 10.1002/adma.201702076

    5. [5]

      Cheng, H.; Huang, Y.; Cheng, Q.; Shi, G.; Jiang, L.; Qu, L. Self-healing graphene oxide based functional architectures triggered by moisture. Adv. Funct. Mater. 2017, 27, 1703096.  doi: 10.1002/adfm.201703096

    6. [6]

      Botta, A.; de Donato, W.; Persico, V.; Pescape, A. Integration of cloud computing and Internet of things: a survey. Futur. Gener. Comp. Syst. 2016, 56, 684–700.  doi: 10.1016/j.future.2015.09.021

    7. [7]

      Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M.; Chen, P.; Wang, S.; Shi, D.; Sun, Q.; Zhang, G. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.  doi: 10.1002/adma.201702076

    8. [8]

      Li, X.; Feng, W. D.; Zhang, X. X.; Wang, W.; Chen, S. J.; Zhang, Y. N. Fabrication of humidity sensors based on laser scribed graphene oxide/SnO2 composite layers. Chin. J. Struct. Chem. 2020, 39, 1949–1957.

    9. [9]

      Yang, S. X.; Jiang, C. B.; Wei, S. H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304.  doi: 10.1063/1.4983310

    10. [10]

      Zhang, L.; Khan, K.; Zou, J. F.; Zhang, H.; Li, Y. C. Recent advances in emerging 2D material-based gas sensors: potential in disease diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329.  doi: 10.1002/admi.201901329

    11. [11]

      Buckley, D. J.; Black, N. C. G.; Castanon, E. G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Mater. 2020, 7, 032002.  doi: 10.1088/2053-1583/ab7bc5

    12. [12]

      Fu, Q.; Bao, X. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.  doi: 10.1039/C6CS00424E

    13. [13]

      Ye, X. L.; Lin, S. J.; Zhang, J. W.; Jiang, H. J.; Cao, L. A.; Wen, Y. Y.; Yao, M. S.; Li, W. H.; Wang, G. E.; Xu, G. Boosting room temperature sensing performances by atomically dispersed Pd stabilized via surface coordination. ACS Sens. 2021, 6, 1103–1110.  doi: 10.1021/acssensors.0c02369

    14. [14]

      Ye, X. L.; Gu, Y. G.; Wang, C. M. Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat. Sens. Actuators, B 2012, 173, 530–539.  doi: 10.1016/j.snb.2012.07.047

    15. [15]

      Ye, X. L.; Huang, Y. Q.; Tang, X. Y.; Xu, J.; Peng, C.; Tan, Y. Z. Two-dimensional extended π-conjugated triphenylene-core covalent organic polymer. J. Mater. Chem. A 2019, 7, 3066–3071.  doi: 10.1039/C8TA10554E

    16. [16]

      Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.  doi: 10.1039/C4CS00330F

    17. [17]

      Liu, M.; Chen, Y. J.; Huang, X.; Dong, L. Z.; Lu, M.; Guo, C.; Yuan, D.; Chen, Y.; Xu, G.; Li, S. L.; Lan, Y. Q. Porphyrin-based COF 2D materials: variable modification of sensing performances by post-metallization. Angew. Chem. Int. Ed. 2022, e202115308.

    18. [18]

      Lu, M.; Zhang, M.; Liu, J.; Chen, Y.; Liao, J. P.; Yang, M. Y.; Cai, Y. P.; Li, S. L.; Lan, Y. Q. Covalent organic framework based functional materials: important catalysts for efficient CO2 utilization. Angew. Chem. Int. Ed. 2022, e202200003.

    19. [19]

      Hu, Y. J.; Yin, Y. H.; Zhang, M.; Wu, Z. P.; Shen, Z. R. In-situ growth of carbon nanosheets intercalated with TiO2 for improving electrochemical performance and stability of lithium-ion batteries. Chin. J. Struct. Chem. 2021, 40, 1513–1524.

    20. [20]

      Qin, R.; Liu, K.; Wu, Q.; Zheng, N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.  doi: 10.1021/acs.chemrev.0c00094

    21. [21]

      Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131.  doi: 10.1021/jacs.6b10978

    22. [22]

      Deshmukh, K.; Kovarik, T.; Pasha, S. K. K. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review. Coord. Chem. Rev. 2020, 424, 213514.  doi: 10.1016/j.ccr.2020.213514

    23. [23]

      Zhao, C. J.; Wu, H. R. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: a DFT study. Appl. Surf. Sci. 2018, 435, 1199–1212.  doi: 10.1016/j.apsusc.2017.11.146

    24. [24]

      Pan, L.; Liu, Y. T.; Zhong, M.; Xie, X. M. Coordination-driven hierarchical assembly of hybrid nanostructures based on 2D materials. Small 2020, 16, 1902779.  doi: 10.1002/smll.201902779

    25. [25]

      Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nano-materials. Chem. Rev. 2019, 119, 478–598.  doi: 10.1021/acs.chemrev.8b00311

    26. [26]

      Wang, S.; Wang, R.; Wang, X.; Zhang, D.; Qiu, X. Nanoscale charge distribution and energy band modification in defect-patterned graphene. Nanoscale 2012, 4, 2651–2657.  doi: 10.1039/c2nr00055e

    27. [27]

      Guo, Y.; Xu, K.; Wu, C.; Zhao, J.; Xie, Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 637–646.  doi: 10.1039/C4CS00302K

    28. [28]

      Liu, J.; Tang, J.; Gooding, J. J. Strategies for chemical modifica-tion of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012, 22, 12435–12452.  doi: 10.1039/c2jm31218b

    29. [29]

      Choi, S. J.; Jang, J. S.; Park, H. J.; Kim, I. D. Optically sintered 2D RuO2 nanosheets: temperature-controlled NO2 reaction. Adv. Funct. Mater. 2017, 27, 1606026.  doi: 10.1002/adfm.201606026

    30. [30]

      ten Elshof, J. E.; Yuan, H.; Gonzalez Rodriguez, P. Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600355.  doi: 10.1002/aenm.201600355

    31. [31]

      Miao, J.; Chen, C.; Meng, L.; Lin, Y. Self-assembled monolayer of metal oxide nanosheet and structure and gas-sensing property relationship. ACS Sens. 2019, 4, 1279–1290.  doi: 10.1021/acssensors.9b00162

    32. [32]

      Pawar, M. S.; Bankar, P. K.; More, M. A.; Late, D. J. Ultra-thin V2O5 nanosheet based humidity sensor, photodetector and its enhanced field emission properties. RSC Adv. 2015, 5, 88796–88804.  doi: 10.1039/C5RA17253E

    33. [33]

      Szendrei, K.; Ganter, P.; Sànchez-Sobrado, O.; Eger, R.; Kuhn, A.; Lotsch, B. V. Touchless optical finger motion tracking based on 2D nanosheets with giant moisture responsiveness. Adv. Mater. 2015, 27, 6341–6348.  doi: 10.1002/adma.201503463

    34. [34]

      Zhang, P.; Zhang, L. X.; Xu, H.; Xing, Y.; Chen, J. J.; Bie, L. J. Ultrathin CeO2 nanosheets as bifunctional sensing materials for humidity and formaldehyde detection. Rare Metals 2021, 40, 1614–1621.  doi: 10.1007/s12598-020-01619-7

    35. [35]

      Choi, S. J.; Kim, I. D.; Park, H. J. 2D layered Mn and Ru oxide nanosheets for real-time breath humidity monitoring. Appl. Surf. Sci. 2022, 573, 151481.  doi: 10.1016/j.apsusc.2021.151481

    36. [36]

      Tsai, F. S.; Wang, S. J. Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets. Sens. Actuators, B 2014, 193, 280–287.  doi: 10.1016/j.snb.2013.11.069

    37. [37]

      Gong, M.; Li, Y.; Guo, Y.; Lv, X.; Dou, X. 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects. Sens. Actuators, B 2018, 262, 350–358.  doi: 10.1016/j.snb.2018.01.187

    38. [38]

      Marchand, R.; Brohan, L.; Tournoux, M. TiO2(B) a new form of titanium-dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 1980, 15, 1129–1133.  doi: 10.1016/0025-5408(80)90076-8

    39. [39]

      Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D.; Wu, B.; Fu, G.; Zheng, N. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–801.  doi: 10.1126/science.aaf5251

    40. [40]

      Guo, W.; Zou, J. H.; Guo, B. B.; Xiong, J. H.; Liu, C.; Xie, Z. H.; Wu, L. Pd nanoclusters/TiO2(B) nanosheets with surface defects to-ward rapid photocatalytic dehalogenation of polyhalogenated biphenyls under visible light. Appl. Catal., B 2020, 277.

    41. [41]

      Xiong, J.; Wen, L.; Jiang, F.; Liu, Y.; Liang, S.; Wu, L. Ultrathin HNb3O8 nanosheet: an efficient photocatalyst for the hydrogen pro-duction. J. Mater. Chem. A 2015, 3, 20627–20632.  doi: 10.1039/C5TA04755B

    42. [42]

      Kapica-Kozar, J.; Pirog, E.; Kusiak-Nejman, E.; Wrobel, R. J.; Gesikiewicz-Puchalska, A.; Morawski, A. W.; Narkiewicz, U.; Michalkiewicz, B. Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. 2017, 41, 1549–1557.  doi: 10.1039/C6NJ02808J

    43. [43]

      Nakayama, N.; Hayashi, T. Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: dispersibility and stabilization in organic solvents. Colloids Surf., A 2008, 317, 543–550.  doi: 10.1016/j.colsurfa.2007.11.036

    44. [44]

      Chen, Z.; Sun, Y.; Zhang, W.; Yang, T.; Chen, L.; Yang, R.; Zhou, N. Controllable synthesis of amine-functionalized Fe3O4 polyhedra for lipase immobilization. CrystEngComm 2016, 18, 3124–3129.  doi: 10.1039/C6CE00269B

    45. [45]

      Bhati, V. S.; Kumar, M.; Banerjee, R. Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: a review. J. Mater. Chem. C 2021, 9, 8776–8808.  doi: 10.1039/D1TC01857D

    46. [46]

      Li, J.; Fu, T.; Chen, Y.; Guan, B.; Zhuo, M.; Yang, T.; Xu, Z.; Li, Q.; Zhang, M. Highly sensitive humidity sensors based on Sb-doped ZnSnO3 nanoparticles with very small sizes. CrystEngComm 2014, 16, 2977–2983.  doi: 10.1039/c3ce42172d

    47. [47]

      Wang, C. P.; Kashi, C.; Ye, X. L.; Li, W. H.; Wang, G. E.; Xu, G. A zinc based coordination polymer: multi-functional material for humidity sensor and fluorescence applications. Chin. J. Struct. Chem. 2021, 40, 1138–1144.

    48. [48]

      Li, H.; Fan, H.; Liu, Z.; Zhang, J.; Wen, Y.; Lu, J.; Jiang, X.; Chen, G. Highly sensitive humidity sensor based on lithium stabilized Na-β"-alumina: dc and ac analysis. Sens. Actuators, B 2018, 255, 1445–1454.  doi: 10.1016/j.snb.2017.08.137

    49. [49]

      Wang, R.; He, Y.; Zhang, T.; Wang, Z.; Zheng, X.; Niu, L.; Wu, F. DC and AC analysis of humidity sensitive properties based on K+ doped nanocrystalline LaCo0.3Fe0.7O3. Sens. Actuators, B 2009, 136, 536–540.  doi: 10.1016/j.snb.2008.12.002

  • 加载中
    1. [1]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    2. [2]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    5. [5]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    6. [6]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    7. [7]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    10. [10]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    15. [15]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(3)
  • Abstract views(407)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return