Atomically Thin 2D TiO2 Nanosheets with Ligand Modified Surface for Ultra-sensitive Humidity Sensor
- Corresponding author: Xiaoliang Ye, yexl@fjirsm.ac.cn Gang Xu, gxu@fjirsm.ac.cn
Citation:
Jianze Xiao, Fu Zhihua, Guane Wang, Xiaoliang Ye, Gang Xu. Atomically Thin 2D TiO2 Nanosheets with Ligand Modified Surface for Ultra-sensitive Humidity Sensor[J]. Chinese Journal of Structural Chemistry,
;2022, 41(4): 220405.
doi:
10.14102/j.cnki.0254-5861.2022-0046
Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N. E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033.
doi: 10.1007/s12274-016-1389-y
Yao, S.; Myers, A.; Malhotra, A.; Lin, F.; Bozkurt, A.; Muth, J. F.; Zhu, Y. A wearable hydration sensor with conformal nanowire electrodes. Adv. Healthcare Mater. 2017, 6, 1601159.
doi: 10.1002/adhm.201601159
Wang, X.; Xiong, Z.; Liu, Z.; Zhang, T. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 2015, 27, 1370–1375.
doi: 10.1002/adma.201404069
Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M.; Chen, P.; Wang, S.; Shi, D.; Sun, Q.; Zhang, G. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.
doi: 10.1002/adma.201702076
Cheng, H.; Huang, Y.; Cheng, Q.; Shi, G.; Jiang, L.; Qu, L. Self-healing graphene oxide based functional architectures triggered by moisture. Adv. Funct. Mater. 2017, 27, 1703096.
doi: 10.1002/adfm.201703096
Botta, A.; de Donato, W.; Persico, V.; Pescape, A. Integration of cloud computing and Internet of things: a survey. Futur. Gener. Comp. Syst. 2016, 56, 684–700.
doi: 10.1016/j.future.2015.09.021
Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M.; Chen, P.; Wang, S.; Shi, D.; Sun, Q.; Zhang, G. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.
doi: 10.1002/adma.201702076
Li, X.; Feng, W. D.; Zhang, X. X.; Wang, W.; Chen, S. J.; Zhang, Y. N. Fabrication of humidity sensors based on laser scribed graphene oxide/SnO2 composite layers. Chin. J. Struct. Chem. 2020, 39, 1949–1957.
Yang, S. X.; Jiang, C. B.; Wei, S. H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304.
doi: 10.1063/1.4983310
Zhang, L.; Khan, K.; Zou, J. F.; Zhang, H.; Li, Y. C. Recent advances in emerging 2D material-based gas sensors: potential in disease diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329.
doi: 10.1002/admi.201901329
Buckley, D. J.; Black, N. C. G.; Castanon, E. G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Mater. 2020, 7, 032002.
doi: 10.1088/2053-1583/ab7bc5
Fu, Q.; Bao, X. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.
doi: 10.1039/C6CS00424E
Ye, X. L.; Lin, S. J.; Zhang, J. W.; Jiang, H. J.; Cao, L. A.; Wen, Y. Y.; Yao, M. S.; Li, W. H.; Wang, G. E.; Xu, G. Boosting room temperature sensing performances by atomically dispersed Pd stabilized via surface coordination. ACS Sens. 2021, 6, 1103–1110.
doi: 10.1021/acssensors.0c02369
Ye, X. L.; Gu, Y. G.; Wang, C. M. Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat. Sens. Actuators, B 2012, 173, 530–539.
doi: 10.1016/j.snb.2012.07.047
Ye, X. L.; Huang, Y. Q.; Tang, X. Y.; Xu, J.; Peng, C.; Tan, Y. Z. Two-dimensional extended π-conjugated triphenylene-core covalent organic polymer. J. Mater. Chem. A 2019, 7, 3066–3071.
doi: 10.1039/C8TA10554E
Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.
doi: 10.1039/C4CS00330F
Liu, M.; Chen, Y. J.; Huang, X.; Dong, L. Z.; Lu, M.; Guo, C.; Yuan, D.; Chen, Y.; Xu, G.; Li, S. L.; Lan, Y. Q. Porphyrin-based COF 2D materials: variable modification of sensing performances by post-metallization. Angew. Chem. Int. Ed. 2022, e202115308.
Lu, M.; Zhang, M.; Liu, J.; Chen, Y.; Liao, J. P.; Yang, M. Y.; Cai, Y. P.; Li, S. L.; Lan, Y. Q. Covalent organic framework based functional materials: important catalysts for efficient CO2 utilization. Angew. Chem. Int. Ed. 2022, e202200003.
Hu, Y. J.; Yin, Y. H.; Zhang, M.; Wu, Z. P.; Shen, Z. R. In-situ growth of carbon nanosheets intercalated with TiO2 for improving electrochemical performance and stability of lithium-ion batteries. Chin. J. Struct. Chem. 2021, 40, 1513–1524.
Qin, R.; Liu, K.; Wu, Q.; Zheng, N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.
doi: 10.1021/acs.chemrev.0c00094
Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131.
doi: 10.1021/jacs.6b10978
Deshmukh, K.; Kovarik, T.; Pasha, S. K. K. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review. Coord. Chem. Rev. 2020, 424, 213514.
doi: 10.1016/j.ccr.2020.213514
Zhao, C. J.; Wu, H. R. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: a DFT study. Appl. Surf. Sci. 2018, 435, 1199–1212.
doi: 10.1016/j.apsusc.2017.11.146
Pan, L.; Liu, Y. T.; Zhong, M.; Xie, X. M. Coordination-driven hierarchical assembly of hybrid nanostructures based on 2D materials. Small 2020, 16, 1902779.
doi: 10.1002/smll.201902779
Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nano-materials. Chem. Rev. 2019, 119, 478–598.
doi: 10.1021/acs.chemrev.8b00311
Wang, S.; Wang, R.; Wang, X.; Zhang, D.; Qiu, X. Nanoscale charge distribution and energy band modification in defect-patterned graphene. Nanoscale 2012, 4, 2651–2657.
doi: 10.1039/c2nr00055e
Guo, Y.; Xu, K.; Wu, C.; Zhao, J.; Xie, Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 637–646.
doi: 10.1039/C4CS00302K
Liu, J.; Tang, J.; Gooding, J. J. Strategies for chemical modifica-tion of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012, 22, 12435–12452.
doi: 10.1039/c2jm31218b
Choi, S. J.; Jang, J. S.; Park, H. J.; Kim, I. D. Optically sintered 2D RuO2 nanosheets: temperature-controlled NO2 reaction. Adv. Funct. Mater. 2017, 27, 1606026.
doi: 10.1002/adfm.201606026
ten Elshof, J. E.; Yuan, H.; Gonzalez Rodriguez, P. Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600355.
doi: 10.1002/aenm.201600355
Miao, J.; Chen, C.; Meng, L.; Lin, Y. Self-assembled monolayer of metal oxide nanosheet and structure and gas-sensing property relationship. ACS Sens. 2019, 4, 1279–1290.
doi: 10.1021/acssensors.9b00162
Pawar, M. S.; Bankar, P. K.; More, M. A.; Late, D. J. Ultra-thin V2O5 nanosheet based humidity sensor, photodetector and its enhanced field emission properties. RSC Adv. 2015, 5, 88796–88804.
doi: 10.1039/C5RA17253E
Szendrei, K.; Ganter, P.; Sànchez-Sobrado, O.; Eger, R.; Kuhn, A.; Lotsch, B. V. Touchless optical finger motion tracking based on 2D nanosheets with giant moisture responsiveness. Adv. Mater. 2015, 27, 6341–6348.
doi: 10.1002/adma.201503463
Zhang, P.; Zhang, L. X.; Xu, H.; Xing, Y.; Chen, J. J.; Bie, L. J. Ultrathin CeO2 nanosheets as bifunctional sensing materials for humidity and formaldehyde detection. Rare Metals 2021, 40, 1614–1621.
doi: 10.1007/s12598-020-01619-7
Choi, S. J.; Kim, I. D.; Park, H. J. 2D layered Mn and Ru oxide nanosheets for real-time breath humidity monitoring. Appl. Surf. Sci. 2022, 573, 151481.
doi: 10.1016/j.apsusc.2021.151481
Tsai, F. S.; Wang, S. J. Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets. Sens. Actuators, B 2014, 193, 280–287.
doi: 10.1016/j.snb.2013.11.069
Gong, M.; Li, Y.; Guo, Y.; Lv, X.; Dou, X. 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects. Sens. Actuators, B 2018, 262, 350–358.
doi: 10.1016/j.snb.2018.01.187
Marchand, R.; Brohan, L.; Tournoux, M. TiO2(B) a new form of titanium-dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 1980, 15, 1129–1133.
doi: 10.1016/0025-5408(80)90076-8
Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D.; Wu, B.; Fu, G.; Zheng, N. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–801.
doi: 10.1126/science.aaf5251
Guo, W.; Zou, J. H.; Guo, B. B.; Xiong, J. H.; Liu, C.; Xie, Z. H.; Wu, L. Pd nanoclusters/TiO2(B) nanosheets with surface defects to-ward rapid photocatalytic dehalogenation of polyhalogenated biphenyls under visible light. Appl. Catal., B 2020, 277.
Xiong, J.; Wen, L.; Jiang, F.; Liu, Y.; Liang, S.; Wu, L. Ultrathin HNb3O8 nanosheet: an efficient photocatalyst for the hydrogen pro-duction. J. Mater. Chem. A 2015, 3, 20627–20632.
doi: 10.1039/C5TA04755B
Kapica-Kozar, J.; Pirog, E.; Kusiak-Nejman, E.; Wrobel, R. J.; Gesikiewicz-Puchalska, A.; Morawski, A. W.; Narkiewicz, U.; Michalkiewicz, B. Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. 2017, 41, 1549–1557.
doi: 10.1039/C6NJ02808J
Nakayama, N.; Hayashi, T. Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: dispersibility and stabilization in organic solvents. Colloids Surf., A 2008, 317, 543–550.
doi: 10.1016/j.colsurfa.2007.11.036
Chen, Z.; Sun, Y.; Zhang, W.; Yang, T.; Chen, L.; Yang, R.; Zhou, N. Controllable synthesis of amine-functionalized Fe3O4 polyhedra for lipase immobilization. CrystEngComm 2016, 18, 3124–3129.
doi: 10.1039/C6CE00269B
Bhati, V. S.; Kumar, M.; Banerjee, R. Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: a review. J. Mater. Chem. C 2021, 9, 8776–8808.
doi: 10.1039/D1TC01857D
Li, J.; Fu, T.; Chen, Y.; Guan, B.; Zhuo, M.; Yang, T.; Xu, Z.; Li, Q.; Zhang, M. Highly sensitive humidity sensors based on Sb-doped ZnSnO3 nanoparticles with very small sizes. CrystEngComm 2014, 16, 2977–2983.
doi: 10.1039/c3ce42172d
Wang, C. P.; Kashi, C.; Ye, X. L.; Li, W. H.; Wang, G. E.; Xu, G. A zinc based coordination polymer: multi-functional material for humidity sensor and fluorescence applications. Chin. J. Struct. Chem. 2021, 40, 1138–1144.
Li, H.; Fan, H.; Liu, Z.; Zhang, J.; Wen, Y.; Lu, J.; Jiang, X.; Chen, G. Highly sensitive humidity sensor based on lithium stabilized Na-β"-alumina: dc and ac analysis. Sens. Actuators, B 2018, 255, 1445–1454.
doi: 10.1016/j.snb.2017.08.137
Wang, R.; He, Y.; Zhang, T.; Wang, Z.; Zheng, X.; Niu, L.; Wu, F. DC and AC analysis of humidity sensitive properties based on K+ doped nanocrystalline LaCo0.3Fe0.7O3. Sens. Actuators, B 2009, 136, 536–540.
doi: 10.1016/j.snb.2008.12.002
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Huan Yao , Jian Qin , Yan-Fang Wang , Song-Meng Wang , Liu-Huan Yi , Shi-Yao Li , Fangfang Du , Liu-Pan Yang , Li-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Jing REN , Ruikui YAN , Xiaoli CHEN , Huali CUI , Hua YANG , Jijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262