Progress and Understanding on Catalysts with Well-defined Interface for Boosting CO2 Conversion
- Corresponding author: Yunxiang Pan, yxpan81@sjtu.edu.cn
Citation:
Binran Zhao, Yiyi Zhao, Peng Liu, Yulong Men, Xinyu Meng, Yunxiang Pan. Progress and Understanding on Catalysts with Well-defined Interface for Boosting CO2 Conversion[J]. Chinese Journal of Structural Chemistry,
;2022, 41(4): 220401.
doi:
10.14102/j.cnki.0254-5861.2022-0024
Melchionna, M.; Fornasiero, P.; Prato, M.; Bonchio, M. Electrocatalytic CO2 reduction: role of the cross-talk at nano-carbon interfaces. Energy Environ. Sci. 2021, 14, 5816–5833.
doi: 10.1039/D1EE00228G
Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.
doi: 10.1021/jacs.7b05362
Ma, W.; He, X.; Wang, W.; Xie, S.; Zhang, Q.; Wang, Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 2021, 50, 12897–12914.
doi: 10.1039/D1CS00535A
Chen, J.; Wang, L. Effects of the catalyst dynamic changes and influence of the reaction environment on the performance of electrochemical CO2 reduction. Adv. Mater. 2021, 2103900.
Liu, G.; Wong, W. S. Y.; Kraft, M.; Ager, J. W.; Vollmer, D.; Xu, R. Wetting-regulated gas-involving (photo) electrocatalysis: biomimetics in energy conversion. Chem. Soc. Rev. 2021, 50, 10674–10699.
doi: 10.1039/D1CS00258A
Meng, X. Y.; Peng, C.; Jia, J.; Liu, P.; Men, Y. L.; Pan, Y. X. Recent progress and understanding on In2O3-based composite catalysts for boosting CO2 hydrogenation. J. CO2 Util. 2022, 55, 101844.
doi: 10.1016/j.jcou.2021.101844
Xie, B.; Lovell, E.; Tan, T. H.; Jantarang, S.; Yu, M.; Scott, J.; Amal, R. Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J. Energy Chem. 2021, 59, 108–125.
doi: 10.1016/j.jechem.2020.11.005
Lu, H.; Tournet, J.; Dastafkan, K.; Liu, Y.; Ng, Y. H.; Karuturi, S. K.; Zhao, C.; Yin, Z. Noble-metal-free multicomponent nanointegration for sustainbale energy conversion. Chem. Rev. 2021, 121, 10271–10366.
doi: 10.1021/acs.chemrev.0c01328
Nam, D. H.; Luna, P. D.; Rosas-Hernández, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.
doi: 10.1038/s41563-020-0610-2
Mehla, S.; Kandjani, A. E.; Babarao, R.; Lee, A. F.; Periasamy, S.; Wilson, K.; Ramakrishna, S.; Bhargava, S. K. Porous crystalline framworks for thermocatalytic CO2 reduction: an emerging paradigm. Energy Environ. Sci. 2021, 14, 320–352.
doi: 10.1039/D0EE01882A
Pan, Y. X.; Wang, Z. J.; Cheng, D. G.; Wang Z. Hydrogenation of CO2 in the absence of noble metals. Greenhouse Gas. Sci. Technol. 2021, 11, 1169–1170.
De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10, 14147–14185.
doi: 10.1021/acscatal.0c04273
Wang, Z. J.; Song, H.; Liu, H.; Ye, J. Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. Int. Ed. 2020, 59, 8016–8035.
doi: 10.1002/anie.201907443
Ghoussoub, M.; Xia, M.; Duchesne P. N.; Segal, D.; Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 2019, 12, 1122–1142.
doi: 10.1039/C8EE02790K
Sun, R.; Liao, Y.; Bai, S. T.; Zheng, M.; Zhou, C.; Zhang, T.; Sels, B. F. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: from nanoscale to single atom. Energy Environ. Sci. 2021, 14, 1247–1285.
doi: 10.1039/D0EE03575K
Taghvaei, H.; Heravi, M.; Rahimpour, M. R. Synthesis of supported nanocatalysts via novel non-thermal plasma methods and its application in catalytic processes. Plasma Process. Polym. 2017, 14, 1600204.
doi: 10.1002/ppap.201600204
Jia, L. Y.; Farouha, A.; Pinard, L.; Hedan, S.; Comparot, J. D.; Dufour, A.; Ben Tayeb, K.; Batiot-Dupeyrat, C. New routes for complete regeneration of coked zeolite. Appl. Catal. B: Environ. 2017, 219, 82–91.
doi: 10.1016/j.apcatb.2017.07.040
Liu, S.; Winter, L. R.; Chen, J. G. Review of plasma-assisted catalysis for selective generation of oxygenates from CO2 and CH4. ACS Catal. 2020, 10, 2855–2871.
doi: 10.1021/acscatal.9b04811
Li, S.; Dang, X.; Yu, X.; Abbas, G.; Zhang, Q.; Cao, L. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review. Chem. Eng. J. 2020, 388, 124275.
doi: 10.1016/j.cej.2020.124275
Liu, L.; Zhang, Z.; Das, S.; Kawi, S. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review. Appl. Catal. B: Environ. 2019, 250, 250–272.
doi: 10.1016/j.apcatb.2019.03.039
Zhang, S.; Oehrlein, G. S. From thermal catalysis to plasma catalysis: a review of surface processes and their characterizations. J. Phys. D: Appl. Phys. 2021, 213001.
George, A.; Shen, B.; Craven, M.; Wang, Y.; Kang, D.; Wu, C.; Tu, X. A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization. Renew. Sust. Energy Rev. 2021, 135, 109702.
doi: 10.1016/j.rser.2020.109702
Van Gessel, B.; Brandenburg, R.; Bruggeman, P. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure. Appl. Phys. Lett. 2013, 103, 064103.
doi: 10.1063/1.4817936
Wang, Z.; Zhang, Y.; Neyts, E. C.; Cao, X.; Zhang, X.; Jang, B. W. L.; Liu, C. J. Catalyst preparation with plasmas: how does it work? ACS Catal. 2018, 8, 2093–2110.
doi: 10.1021/acscatal.7b03723
Xu, J.; Zhang, Q.; Guo, F.; Xia, Y.; Tian, H. Coke resistance of Ni-based catalysts enhanced by cold plasma treatment for CH4-CO2 reforming: review. Inter. J. Hydrogen Energy 2021, 46, 23174–23189.
doi: 10.1016/j.ijhydene.2021.03.245
Di, L.; Zhang, J.; Zhang, X. A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts. Plasma Process Polym. 2018, 15, e1700234.
doi: 10.1002/ppap.201700234
Kim, S. H.; Moon, S. Y.; Park, J. Y. Non-colloidal nanocatalysts fabricated using arc plasma deposition and their applications in heterogeneous catalysis and photocatalysis. Top. Catal. 2017, 60, 812–822.
doi: 10.1007/s11244-017-0746-8
Chen, G.; Snyders, R.; Britun, N. CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. J. CO2 Util. 2021, 49, 101557.
doi: 10.1016/j.jcou.2021.101557
Snoeckx, R.; Bogaerts, A. Plasma technology-a novel solution for CO2 conversion? Chem. Soc. Rev. 2017, 46, 5805–5863.
doi: 10.1039/C6CS00066E
Chen, G.; Godfroid, T.; Britun, N.; Georgieva, V.; Delplancke-Ogletree, M. P.; Snyders, R. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Appl. Catal. B: Environ. 2017, 214, 114–125.
doi: 10.1016/j.apcatb.2017.05.032
Bian, L.; Zhang, L.; Xia, R.; Li, Z. Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst. J Nat. Gas Sci. Eng. 2015, 27, 1189–1194.
doi: 10.1016/j.jngse.2015.09.066
Guo, F.; Xu, J. Q.; Chu, W. CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma. Catal. Today 2015, 256, 124–129.
doi: 10.1016/j.cattod.2015.02.036
Liu, J.; Ma, Q.; Huang, Z.; Liu, G.; Zhang, H. Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 2019, 31, 1800696.
doi: 10.1002/adma.201800696
Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.
doi: 10.1039/C9CS00614A
Zada, A.; Muhammad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis and applications. Adv. Funct. Mater. 2020, 30, 1906744.
doi: 10.1002/adfm.201906744
Akhundi, A.; Habibi-Yangjeh, A.; Abitorabi M.; Pouran, S. R. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal. Rev. 2019, 61, 595–628.
doi: 10.1080/01614940.2019.1654224
Price, C. A. H.; Reina, T. R.; Liu, J. Engineering heterogenous catalysts for chemical CO2 utilization: lessons from thermal catalysis and advantages of yolk@shell structured nanoreactors. J. Energy Chem. 2021, 57, 304–324.
doi: 10.1016/j.jechem.2020.08.061
Zhang, H.; Cheng, W.; Luan, D.; Lou, X. W. Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting. Angew. Chem. Int. Ed. 2021, 60, 13177–13196.
doi: 10.1002/anie.202014112
Zou, J. J.; Zhang, Y. P.; Liu, C. J. Reduction of supported noble-metals ions using glow discharge plasma. Langmuir 2006, 22, 11388–11394.
doi: 10.1021/la061795b
Yan, J.; Pan, Y.; Cheetham, A. G.; Lin, Y. A.; Wang, W.; Cui, H.; Liu, C. J. One-step fabrication of self-assembled peptide thin films with highly dispersed noble metal nanoparticles. Langmuir 2013, 29, 16051–16057.
doi: 10.1021/la4036908
Zhao, Y.; Pan, Y. X.; Xie, Y.; Liu, C. J. Carbon dioxide reforming of methane over glow discharge plasma-reduced Ir/Al2O3 catalyst. Catal. Commun. 2008, 9, 1558–1562.
doi: 10.1016/j.catcom.2007.12.024
Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy. Appl. Catal. B: Environ. 2017, 218, 488–497.
doi: 10.1016/j.apcatb.2017.06.069
Men, Y. L.; Liu, Y.; Wang, Q.; Luo, Z. H.; Shao, S.; Li, Y. B.; Pan, Y. X. Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chem. Eng. Sci. 2019, 200, 167–175.
doi: 10.1016/j.ces.2019.02.004
Li, J.; Zhou, Y.; Tang, W.; Zheng, J.; Gao, X.; Wang, N.; Chen, X.; Wei, M.; Xiao, X.; Chu, W. Cold-plasma technique enabled supported Pt single atoms with tunable coordination for hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 285, 119861.
doi: 10.1016/j.apcatb.2020.119861
Shi, L.; Zhou, Y.; Tan, X.; Qi, S.; Smith, K. J.; Yi, C.; Yang, B.; Liu, S. Dielectric barrier discharge plasma grafting carboxylate groups on Pt/Al2O3 catalysts for highly efficient hydrogen release from perhydrodibenzyltoluene. Catal. Sci. Technol. 2022, DOI: 10.1039/d1cy01652k.
doi: 10.1039/d1cy01652k
Men, Y. L.; Liu, P.; Peng, X.; Pan, Y. X. Efficient photocatalytic triggered by thin carbon layers coating on photocatalysis: recent progress and future perspective. Sci. China Chem. 2020, 63, 1416–1427.
doi: 10.1007/s11426-020-9767-9
Chen, S.; Chen, A. Electrochemical reduction of carbon dioxide on Au nanoparticles: an in situ FTIR study. J. Phys. Chem. C 2019, 123, 23898–23906.
doi: 10.1021/acs.jpcc.9b04080
Zhang, T.; Shang, H.; Zhang, B.; Yan, D.; Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.
doi: 10.1021/acsami.1c02737
Garba, M. D.; Usman, M.; Khan, S.; Shehzad, F.; Galadima, A.; Ehsan, M. F.; Ghanem, A. S.; Humayun, M. CO2 towards fuels: a review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng. 2021, 9, 104756.
doi: 10.1016/j.jece.2020.104756
Franco, F.; Rettenmaier, C.; Jeon, H. S.; Cuenya, B. R. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884–6946.
doi: 10.1039/D0CS00835D
Ao, C.; Feng, B.; Qian, S.; Wang, L.; Zhao, W.; Zhai, Y.; Zhang, L. Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. J. CO2 Util. 2020, 36, 116–123.
doi: 10.1016/j.jcou.2019.11.007
Wang, D.; Xie, Z.; Porosoff, M. D.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. Chem 2021, 7, 2277–2311.
doi: 10.1016/j.chempr.2021.02.024
Dou, S.; Wang, X.; Wang, S. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 2019, 3, 1800211.
doi: 10.1002/smtd.201800211
Podrojková, N.; Sans, V.; Oriňak, A.; Oriňaková, R. Recent developments in the modeling of heterogeneous catalysts for CO2 conversion to chemicals. ChemCatChem 2020, 12, 1802–1825.
doi: 10.1002/cctc.201901879
Liu, C. J.; Ye, J.; Jiang, J.; Pan, Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529–541.
doi: 10.1002/cctc.201000358
Fu, Z.; Wang, J.; Zhang, N.; Hao, K.; Yang, Z. Effects of substrate defects on the carbon cluster formation in graphene growth on Ni(111) surface. Phys. Lett. A 2014, 378, 3055–3059.
doi: 10.1016/j.physleta.2014.08.024
Liu, P.; Peng, X.; Men, Y. L.; Pan, Y. X. Recent progresses on improving CO2 adsorption and proton production for enhancing efficiency of photocatalytic CO2 reduction by H2O. Green Chem. Eng. 2020, 1, 33-39.
doi: 10.1016/j.gce.2020.09.003
Zhu, X.; Huo, P.; Zhang, Y. P.; Cheng, D. G.; Liu, C. J. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl. Catal. B: Environ. 2008, 81, 132–140.
doi: 10.1016/j.apcatb.2007.11.042
Marinho, A. L. A.; Toniolo, F. S.; Noronha, F. B.; Epron, F.; Duprez, D.; Bion, N. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane. Appl. Catal. B: Environ. 2021, 281, 119459.
doi: 10.1016/j.apcatb.2020.119459
Zou, J. J.; Liu, C. J.; Zhang, Y. P. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment. Langmuir 2006, 22, 2334–2339.
doi: 10.1021/la052135u
Pan, Y. X.; Liu, C. J.; Shi, P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. J. Power Sources 2008, 176, 46–53.
doi: 10.1016/j.jpowsour.2007.10.039
Yan, X.; Hu, T.; Liu, P.; Li, S.; Zhao, B.; Zhang, Q.; Jiao, W.; Chen, S.; Wang, P.; Lu, J.; Fan, L.; Deng, X.; Pan, Y. X. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B: Environ. 2019, 246, 221–231.
doi: 10.1016/j.apcatb.2019.01.070
Jia, X.; Zhang, X.; Rui, N.; Hu, X.; Liu, C. J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B: Environ. 2019, 244, 159–169.
doi: 10.1016/j.apcatb.2018.11.024
Rui, N.; Zhang, X.; Zhang, F.; Liu, Z.; Cao, X.; Xie, Z.; Zou, R.; Senanayake, S. D.; Yang, Y.; Rodriguez, J. A.; Liu, C. J. Highly active Ni/CeO2 catalyst for CO2 methanation: preparation and characterization. Appl. Catal. B: Environ. 2021, 282, 119581.
doi: 10.1016/j.apcatb.2020.119581
Zheng, X.; Wang, H.; Wen, J.; Peng, H. In2S3-NiS co-decorated MoO3@MoS2 composites for enhancing the solar-light induced CO2 photoreduction activity. Int. J. Hydrogen Energy 2021, 46, 36848–36858.
doi: 10.1016/j.ijhydene.2021.08.161
Xu, J.; Xia, P.; Zhang, Q.; Guo, F.; Xia, Y.; Tian, H. Coke resistance of Ni-based catalysts enhanced by cold plasma treatment for CH4-CO2 reforming: review. Int. J. Hydrogen Energy 2021, 46, 23174–23189.
doi: 10.1016/j.ijhydene.2021.03.245
Sivachandiran, L.; Costa, P. D.; Khacef, A. CO2 reforming in CH4 over Ni/γ-Al2O3 nano catalysts: effect of cold plasma surface discharge. Appl. Surf. Sci. 2020, 501, 144175.
doi: 10.1016/j.apsusc.2019.144175
Zhao, B.; Liu, P.; Li, S.; Shi, H.; Jia, X.; Wang, Q.; Yang, F.; Song, Z.; Guo, C.; Hu, J.; Chen, Z.; Yan, X.; Ma, X. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: effect of homogeneity of Ni-Co alloy. Appl. Catal. B: Environ. 2020, 278, 119307.
doi: 10.1016/j.apcatb.2020.119307
Ahmad, F.; Lovell, E. C.; Masood, H.; Cullen, P. J.; Ostrikov, K. K.; Scott, J. A.; Amal, R. Low-temperature CO2 methanation: synergistic effects in plasma-Ni hybrid catalytic system. ACS Sustainable Chem. Eng. 2020, 8, 1888–1898.
doi: 10.1021/acssuschemeng.9b06180
Wang, B.; Xiong, Y.; Han, Y.; Hong, J.; Zhang, Y.; Li, J.; Jing, F.; Chu, W. Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming. Appl. Catal. B: Environ. 2019, 249, 257–265.
doi: 10.1016/j.apcatb.2019.02.074
Tang, W.; Li, J.; Zheng, J.; Chu, W.; Wang, N. Atomically dispersed metal sites stabilized on a nitrogen doped carbon carrier via N2 glow-discharge plasma. Chem. Commun. 2020, 56, 9198–9201.
doi: 10.1039/D0CC02949A
Ronda-Lloret, M.; Wang, Y.; Oulego, P.; Rothenberg, G.; Tu, X. CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chem. Eng. 2020, 8, 17397–17407.
doi: 10.1021/acssuschemeng.0c05565
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361