Citation: Binran Zhao, Yiyi Zhao, Peng Liu, Yulong Men, Xinyu Meng, Yunxiang Pan. Progress and Understanding on Catalysts with Well-defined Interface for Boosting CO2 Conversion[J]. Chinese Journal of Structural Chemistry, ;2022, 41(4): 220401. doi: 10.14102/j.cnki.0254-5861.2022-0024 shu

Progress and Understanding on Catalysts with Well-defined Interface for Boosting CO2 Conversion

  • Corresponding author: Yunxiang Pan, yxpan81@sjtu.edu.cn
  • Received Date: 5 February 2022
    Accepted Date: 22 February 2022

Figures(12)

  • Catalytic conversion of CO2 into valuable chemicals like CH3OH is the most promising way to alleviate CO2 emission for solving the serious climate change issue. Multi-component catalysts with well-defined interface show outstanding performance in CO2 conversion due to the synergistic effects and multifunctional properties caused by the well-defined interface. A discharge technique, named as cold plasma, has been recognized as an excellent strategy for tuning catalyst interface properties. The temperature of cold plasma is lower than 200 ⁰C, and can be further lowered to room temperature by simply changing the operation conditions of cold plasma. The lower temperature of cold plasma can well maintain the catalyst structures, especially the porous structures. When conducting cold plasma, in addition to nontoxic working gases like Ar and air, no harmful substances are used. Cold-plasma-prepared catalysts have unique interface properties, and thereby exhibit superior performance in CO2 conversion over the catalysts prepared by traditional methods. The present review summarizes the progress about the cold-plasma-prepared catalysts for CO2 conversion, discusses the origin for the outstanding catalytic performance, and proposes the challenges and opportunities for further studies. This will stimulate more deep insights into the cold-plasma-prepared catalysts with well-defined interface properties for achieving more efficient CO2 conversion.
  • 加载中
    1. [1]

      Melchionna, M.; Fornasiero, P.; Prato, M.; Bonchio, M. Electrocatalytic CO2 reduction: role of the cross-talk at nano-carbon interfaces. Energy Environ. Sci. 2021, 14, 5816–5833.  doi: 10.1039/D1EE00228G

    2. [2]

      Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.  doi: 10.1021/jacs.7b05362

    3. [3]

      Ma, W.; He, X.; Wang, W.; Xie, S.; Zhang, Q.; Wang, Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 2021, 50, 12897–12914.  doi: 10.1039/D1CS00535A

    4. [4]

      Chen, J.; Wang, L. Effects of the catalyst dynamic changes and influence of the reaction environment on the performance of electrochemical CO2 reduction. Adv. Mater. 2021, 2103900.

    5. [5]

      Liu, G.; Wong, W. S. Y.; Kraft, M.; Ager, J. W.; Vollmer, D.; Xu, R. Wetting-regulated gas-involving (photo) electrocatalysis: biomimetics in energy conversion. Chem. Soc. Rev. 2021, 50, 10674–10699.  doi: 10.1039/D1CS00258A

    6. [6]

      Meng, X. Y.; Peng, C.; Jia, J.; Liu, P.; Men, Y. L.; Pan, Y. X. Recent progress and understanding on In2O3-based composite catalysts for boosting CO2 hydrogenation. J. CO2 Util. 2022, 55, 101844.  doi: 10.1016/j.jcou.2021.101844

    7. [7]

      Xie, B.; Lovell, E.; Tan, T. H.; Jantarang, S.; Yu, M.; Scott, J.; Amal, R. Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J. Energy Chem. 2021, 59, 108–125.  doi: 10.1016/j.jechem.2020.11.005

    8. [8]

      Lu, H.; Tournet, J.; Dastafkan, K.; Liu, Y.; Ng, Y. H.; Karuturi, S. K.; Zhao, C.; Yin, Z. Noble-metal-free multicomponent nanointegration for sustainbale energy conversion. Chem. Rev. 2021, 121, 10271–10366.  doi: 10.1021/acs.chemrev.0c01328

    9. [9]

      Nam, D. H.; Luna, P. D.; Rosas-Hernández, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.  doi: 10.1038/s41563-020-0610-2

    10. [10]

      Mehla, S.; Kandjani, A. E.; Babarao, R.; Lee, A. F.; Periasamy, S.; Wilson, K.; Ramakrishna, S.; Bhargava, S. K. Porous crystalline framworks for thermocatalytic CO2 reduction: an emerging paradigm. Energy Environ. Sci. 2021, 14, 320–352.  doi: 10.1039/D0EE01882A

    11. [11]

      Pan, Y. X.; Wang, Z. J.; Cheng, D. G.; Wang Z. Hydrogenation of CO2 in the absence of noble metals. Greenhouse Gas. Sci. Technol. 2021, 11, 1169–1170.

    12. [12]

      De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10, 14147–14185.  doi: 10.1021/acscatal.0c04273

    13. [13]

      Wang, Z. J.; Song, H.; Liu, H.; Ye, J. Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. Int. Ed. 2020, 59, 8016–8035.  doi: 10.1002/anie.201907443

    14. [14]

      Ghoussoub, M.; Xia, M.; Duchesne P. N.; Segal, D.; Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 2019, 12, 1122–1142.  doi: 10.1039/C8EE02790K

    15. [15]

      Sun, R.; Liao, Y.; Bai, S. T.; Zheng, M.; Zhou, C.; Zhang, T.; Sels, B. F. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: from nanoscale to single atom. Energy Environ. Sci. 2021, 14, 1247–1285.  doi: 10.1039/D0EE03575K

    16. [16]

      Taghvaei, H.; Heravi, M.; Rahimpour, M. R. Synthesis of supported nanocatalysts via novel non-thermal plasma methods and its application in catalytic processes. Plasma Process. Polym. 2017, 14, 1600204.  doi: 10.1002/ppap.201600204

    17. [17]

      Jia, L. Y.; Farouha, A.; Pinard, L.; Hedan, S.; Comparot, J. D.; Dufour, A.; Ben Tayeb, K.; Batiot-Dupeyrat, C. New routes for complete regeneration of coked zeolite. Appl. Catal. B: Environ. 2017, 219, 82–91.  doi: 10.1016/j.apcatb.2017.07.040

    18. [18]

      Liu, S.; Winter, L. R.; Chen, J. G. Review of plasma-assisted catalysis for selective generation of oxygenates from CO2 and CH4. ACS Catal. 2020, 10, 2855–2871.  doi: 10.1021/acscatal.9b04811

    19. [19]

      Li, S.; Dang, X.; Yu, X.; Abbas, G.; Zhang, Q.; Cao, L. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review. Chem. Eng. J. 2020, 388, 124275.  doi: 10.1016/j.cej.2020.124275

    20. [20]

      Liu, L.; Zhang, Z.; Das, S.; Kawi, S. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review. Appl. Catal. B: Environ. 2019, 250, 250–272.  doi: 10.1016/j.apcatb.2019.03.039

    21. [21]

      Zhang, S.; Oehrlein, G. S. From thermal catalysis to plasma catalysis: a review of surface processes and their characterizations. J. Phys. D: Appl. Phys. 2021, 213001.

    22. [22]

      George, A.; Shen, B.; Craven, M.; Wang, Y.; Kang, D.; Wu, C.; Tu, X. A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization. Renew. Sust. Energy Rev. 2021, 135, 109702.  doi: 10.1016/j.rser.2020.109702

    23. [23]

      Van Gessel, B.; Brandenburg, R.; Bruggeman, P. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure. Appl. Phys. Lett. 2013, 103, 064103.  doi: 10.1063/1.4817936

    24. [24]

      Wang, Z.; Zhang, Y.; Neyts, E. C.; Cao, X.; Zhang, X.; Jang, B. W. L.; Liu, C. J. Catalyst preparation with plasmas: how does it work? ACS Catal. 2018, 8, 2093–2110.  doi: 10.1021/acscatal.7b03723

    25. [25]

      Xu, J.; Zhang, Q.; Guo, F.; Xia, Y.; Tian, H. Coke resistance of Ni-based catalysts enhanced by cold plasma treatment for CH4-CO2 reforming: review. Inter. J. Hydrogen Energy 2021, 46, 23174–23189.  doi: 10.1016/j.ijhydene.2021.03.245

    26. [26]

      Di, L.; Zhang, J.; Zhang, X. A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts. Plasma Process Polym. 2018, 15, e1700234.  doi: 10.1002/ppap.201700234

    27. [27]

      Kim, S. H.; Moon, S. Y.; Park, J. Y. Non-colloidal nanocatalysts fabricated using arc plasma deposition and their applications in heterogeneous catalysis and photocatalysis. Top. Catal. 2017, 60, 812–822.  doi: 10.1007/s11244-017-0746-8

    28. [28]

      Chen, G.; Snyders, R.; Britun, N. CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. J. CO2 Util. 2021, 49, 101557.  doi: 10.1016/j.jcou.2021.101557

    29. [29]

      Snoeckx, R.; Bogaerts, A. Plasma technology-a novel solution for CO2 conversion? Chem. Soc. Rev. 2017, 46, 5805–5863.  doi: 10.1039/C6CS00066E

    30. [30]

      Chen, G.; Godfroid, T.; Britun, N.; Georgieva, V.; Delplancke-Ogletree, M. P.; Snyders, R. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Appl. Catal. B: Environ. 2017, 214, 114–125.  doi: 10.1016/j.apcatb.2017.05.032

    31. [31]

      Bian, L.; Zhang, L.; Xia, R.; Li, Z. Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst. J Nat. Gas Sci. Eng. 2015, 27, 1189–1194.  doi: 10.1016/j.jngse.2015.09.066

    32. [32]

      Guo, F.; Xu, J. Q.; Chu, W. CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma. Catal. Today 2015, 256, 124–129.  doi: 10.1016/j.cattod.2015.02.036

    33. [33]

      Liu, J.; Ma, Q.; Huang, Z.; Liu, G.; Zhang, H. Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 2019, 31, 1800696.  doi: 10.1002/adma.201800696

    34. [34]

      Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.  doi: 10.1039/C9CS00614A

    35. [35]

      Zada, A.; Muhammad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis and applications. Adv. Funct. Mater. 2020, 30, 1906744.  doi: 10.1002/adfm.201906744

    36. [36]

      Akhundi, A.; Habibi-Yangjeh, A.; Abitorabi M.; Pouran, S. R. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal. Rev. 2019, 61, 595–628.  doi: 10.1080/01614940.2019.1654224

    37. [37]

      Price, C. A. H.; Reina, T. R.; Liu, J. Engineering heterogenous catalysts for chemical CO2 utilization: lessons from thermal catalysis and advantages of yolk@shell structured nanoreactors. J. Energy Chem. 2021, 57, 304–324.  doi: 10.1016/j.jechem.2020.08.061

    38. [38]

      Zhang, H.; Cheng, W.; Luan, D.; Lou, X. W. Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting. Angew. Chem. Int. Ed. 2021, 60, 13177–13196.  doi: 10.1002/anie.202014112

    39. [39]

      Zou, J. J.; Zhang, Y. P.; Liu, C. J. Reduction of supported noble-metals ions using glow discharge plasma. Langmuir 2006, 22, 11388–11394.  doi: 10.1021/la061795b

    40. [40]

      Yan, J.; Pan, Y.; Cheetham, A. G.; Lin, Y. A.; Wang, W.; Cui, H.; Liu, C. J. One-step fabrication of self-assembled peptide thin films with highly dispersed noble metal nanoparticles. Langmuir 2013, 29, 16051–16057.  doi: 10.1021/la4036908

    41. [41]

      Zhao, Y.; Pan, Y. X.; Xie, Y.; Liu, C. J. Carbon dioxide reforming of methane over glow discharge plasma-reduced Ir/Al2O3 catalyst. Catal. Commun. 2008, 9, 1558–1562.  doi: 10.1016/j.catcom.2007.12.024

    42. [42]

      Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy. Appl. Catal. B: Environ. 2017, 218, 488–497.  doi: 10.1016/j.apcatb.2017.06.069

    43. [43]

      Men, Y. L.; Liu, Y.; Wang, Q.; Luo, Z. H.; Shao, S.; Li, Y. B.; Pan, Y. X. Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chem. Eng. Sci. 2019, 200, 167–175.  doi: 10.1016/j.ces.2019.02.004

    44. [44]

      Li, J.; Zhou, Y.; Tang, W.; Zheng, J.; Gao, X.; Wang, N.; Chen, X.; Wei, M.; Xiao, X.; Chu, W. Cold-plasma technique enabled supported Pt single atoms with tunable coordination for hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 285, 119861.  doi: 10.1016/j.apcatb.2020.119861

    45. [45]

      Shi, L.; Zhou, Y.; Tan, X.; Qi, S.; Smith, K. J.; Yi, C.; Yang, B.; Liu, S. Dielectric barrier discharge plasma grafting carboxylate groups on Pt/Al2O3 catalysts for highly efficient hydrogen release from perhydrodibenzyltoluene. Catal. Sci. Technol. 2022, DOI: 10.1039/d1cy01652k.  doi: 10.1039/d1cy01652k

    46. [46]

      Men, Y. L.; Liu, P.; Peng, X.; Pan, Y. X. Efficient photocatalytic triggered by thin carbon layers coating on photocatalysis: recent progress and future perspective. Sci. China Chem. 2020, 63, 1416–1427.  doi: 10.1007/s11426-020-9767-9

    47. [47]

      Chen, S.; Chen, A. Electrochemical reduction of carbon dioxide on Au nanoparticles: an in situ FTIR study. J. Phys. Chem. C 2019, 123, 23898–23906.  doi: 10.1021/acs.jpcc.9b04080

    48. [48]

      Zhang, T.; Shang, H.; Zhang, B.; Yan, D.; Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.  doi: 10.1021/acsami.1c02737

    49. [49]

      Garba, M. D.; Usman, M.; Khan, S.; Shehzad, F.; Galadima, A.; Ehsan, M. F.; Ghanem, A. S.; Humayun, M. CO2 towards fuels: a review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng. 2021, 9, 104756.  doi: 10.1016/j.jece.2020.104756

    50. [50]

      Franco, F.; Rettenmaier, C.; Jeon, H. S.; Cuenya, B. R. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884–6946.  doi: 10.1039/D0CS00835D

    51. [51]

      Ao, C.; Feng, B.; Qian, S.; Wang, L.; Zhao, W.; Zhai, Y.; Zhang, L. Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. J. CO2 Util. 2020, 36, 116–123.  doi: 10.1016/j.jcou.2019.11.007

    52. [52]

      Wang, D.; Xie, Z.; Porosoff, M. D.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. Chem 2021, 7, 2277–2311.  doi: 10.1016/j.chempr.2021.02.024

    53. [53]

      Dou, S.; Wang, X.; Wang, S. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 2019, 3, 1800211.  doi: 10.1002/smtd.201800211

    54. [54]

      Podrojková, N.; Sans, V.; Oriňak, A.; Oriňaková, R. Recent developments in the modeling of heterogeneous catalysts for CO2 conversion to chemicals. ChemCatChem 2020, 12, 1802–1825.  doi: 10.1002/cctc.201901879

    55. [55]

      Liu, C. J.; Ye, J.; Jiang, J.; Pan, Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529–541.  doi: 10.1002/cctc.201000358

    56. [56]

      Fu, Z.; Wang, J.; Zhang, N.; Hao, K.; Yang, Z. Effects of substrate defects on the carbon cluster formation in graphene growth on Ni(111) surface. Phys. Lett. A 2014, 378, 3055–3059.  doi: 10.1016/j.physleta.2014.08.024

    57. [57]

      Liu, P.; Peng, X.; Men, Y. L.; Pan, Y. X. Recent progresses on improving CO2 adsorption and proton production for enhancing efficiency of photocatalytic CO2 reduction by H2O. Green Chem. Eng. 2020, 1, 33-39.  doi: 10.1016/j.gce.2020.09.003

    58. [58]

      Zhu, X.; Huo, P.; Zhang, Y. P.; Cheng, D. G.; Liu, C. J. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl. Catal. B: Environ. 2008, 81, 132–140.  doi: 10.1016/j.apcatb.2007.11.042

    59. [59]

      Marinho, A. L. A.; Toniolo, F. S.; Noronha, F. B.; Epron, F.; Duprez, D.; Bion, N. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane. Appl. Catal. B: Environ. 2021, 281, 119459.  doi: 10.1016/j.apcatb.2020.119459

    60. [60]

      Zou, J. J.; Liu, C. J.; Zhang, Y. P. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment. Langmuir 2006, 22, 2334–2339.  doi: 10.1021/la052135u

    61. [61]

      Pan, Y. X.; Liu, C. J.; Shi, P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. J. Power Sources 2008, 176, 46–53.  doi: 10.1016/j.jpowsour.2007.10.039

    62. [62]

      Yan, X.; Hu, T.; Liu, P.; Li, S.; Zhao, B.; Zhang, Q.; Jiao, W.; Chen, S.; Wang, P.; Lu, J.; Fan, L.; Deng, X.; Pan, Y. X. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B: Environ. 2019, 246, 221–231.  doi: 10.1016/j.apcatb.2019.01.070

    63. [63]

      Jia, X.; Zhang, X.; Rui, N.; Hu, X.; Liu, C. J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B: Environ. 2019, 244, 159–169.  doi: 10.1016/j.apcatb.2018.11.024

    64. [64]

      Rui, N.; Zhang, X.; Zhang, F.; Liu, Z.; Cao, X.; Xie, Z.; Zou, R.; Senanayake, S. D.; Yang, Y.; Rodriguez, J. A.; Liu, C. J. Highly active Ni/CeO2 catalyst for CO2 methanation: preparation and characterization. Appl. Catal. B: Environ. 2021, 282, 119581.  doi: 10.1016/j.apcatb.2020.119581

    65. [65]

      Zheng, X.; Wang, H.; Wen, J.; Peng, H. In2S3-NiS co-decorated MoO3@MoS2 composites for enhancing the solar-light induced CO2 photoreduction activity. Int. J. Hydrogen Energy 2021, 46, 36848–36858.  doi: 10.1016/j.ijhydene.2021.08.161

    66. [66]

      Xu, J.; Xia, P.; Zhang, Q.; Guo, F.; Xia, Y.; Tian, H. Coke resistance of Ni-based catalysts enhanced by cold plasma treatment for CH4-CO2 reforming: review. Int. J. Hydrogen Energy 2021, 46, 23174–23189.  doi: 10.1016/j.ijhydene.2021.03.245

    67. [67]

      Sivachandiran, L.; Costa, P. D.; Khacef, A. CO2 reforming in CH4 over Ni/γ-Al2O3 nano catalysts: effect of cold plasma surface discharge. Appl. Surf. Sci. 2020, 501, 144175.  doi: 10.1016/j.apsusc.2019.144175

    68. [68]

      Zhao, B.; Liu, P.; Li, S.; Shi, H.; Jia, X.; Wang, Q.; Yang, F.; Song, Z.; Guo, C.; Hu, J.; Chen, Z.; Yan, X.; Ma, X. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: effect of homogeneity of Ni-Co alloy. Appl. Catal. B: Environ. 2020, 278, 119307.  doi: 10.1016/j.apcatb.2020.119307

    69. [69]

      Ahmad, F.; Lovell, E. C.; Masood, H.; Cullen, P. J.; Ostrikov, K. K.; Scott, J. A.; Amal, R. Low-temperature CO2 methanation: synergistic effects in plasma-Ni hybrid catalytic system. ACS Sustainable Chem. Eng. 2020, 8, 1888–1898.  doi: 10.1021/acssuschemeng.9b06180

    70. [70]

      Wang, B.; Xiong, Y.; Han, Y.; Hong, J.; Zhang, Y.; Li, J.; Jing, F.; Chu, W. Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming. Appl. Catal. B: Environ. 2019, 249, 257–265.  doi: 10.1016/j.apcatb.2019.02.074

    71. [71]

      Tang, W.; Li, J.; Zheng, J.; Chu, W.; Wang, N. Atomically dispersed metal sites stabilized on a nitrogen doped carbon carrier via N2 glow-discharge plasma. Chem. Commun. 2020, 56, 9198–9201.  doi: 10.1039/D0CC02949A

    72. [72]

      Ronda-Lloret, M.; Wang, Y.; Oulego, P.; Rothenberg, G.; Tu, X. CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chem. Eng. 2020, 8, 17397–17407.  doi: 10.1021/acssuschemeng.0c05565

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    3. [3]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    4. [4]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    5. [5]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    6. [6]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    7. [7]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    8. [8]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    9. [9]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    10. [10]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    11. [11]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    18. [18]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    19. [19]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    20. [20]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

Metrics
  • PDF Downloads(5)
  • Abstract views(465)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return