Citation: Yue Zhao, Yachong Liu, Boqiang Miao, Yu Ding, Pujun Jin, Yu Chen. One-dimensional Rhodium-nickel Alloy Assemblies with Nano-dendrite Subunits for Alkaline Methanol Oxidation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(4): 220404. doi: 10.14102/j.cnki.0254-5861.2022-0019 shu

One-dimensional Rhodium-nickel Alloy Assemblies with Nano-dendrite Subunits for Alkaline Methanol Oxidation

Figures(5)

  • The noble metal rhodium (Rh) nanostructures have wide applications in catalysis and electrocatalysis. In this work, a series of RhNi alloy nanostructures with different Rh/Ni atomic ratios can be synthesized by one-step wet chemical method. By adjusting RhIII/NiII feed ratio, high-quality one-dimensional Rh1Ni1 alloy nanodendrite assemblies (Rh1Ni1-NDs-As) can be synthesized selectively. Electrochemical measurements show that the introduction of Ni can enhance the electroactivity of Rh nanomaterials for methanol oxidation reaction (MOR) in alkaline media. For potential practical application, Rh1Ni1-NDs-As reveals improved electroactivity and durability for MOR compared to commercial Rh nanoparticle due to the particular morphology, Ni-doping, high electrochemical active area, and excellent anti-poison ability. Considering the facial synthesis and high electroactivity/durability, Rh1Ni1-NDs-As may be promising anode catalysts in direct methanol fuel cells.
  • 加载中
    1. [1]

      de Souza Rodrigues, M. P.; Dourado, A. H. B.; Cutolo, L. D. O.; Parreira, L. S.; Alves, T. V.; Slater, T. J. A.; Haigh, S. J.; Camargo, P. H. C.; Cordoba de Torresi, S. I. Gold-rhodium nanoflowers for the plasmon-enhanced hydrogen evolution reaction under visible light. ACS Catal. 2021, 11, 13543.

    2. [2]

      Zhang, Y.; Li, G.; Zhao, Z.; Han, L.; Feng, Y.; Liu, S.; Xu, B.; Liao, H.; Lu, G.; Xin, H. L.; Feng, Y. G.; Liu, S. H.; Xu, B. Y.; Liao, H. G.; Lu, G.; Xin, H. L.; Huang, X. Q. Atomically isolated Rh sites within highly branched Rh2Sb nanostructures enhance bifunctional hydrogen electrocatalysis. Adv. Mater. 2021, 33, 2105049.

    3. [3]

      Duan, Z.; Deng, K.; Li, C.; Zhang, M.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Polyaniline-coated mesoporous Rh films for nonacidic hydrogen evolution reaction. Chem. Eng. J. 2022, 428, 132646.  doi: 10.1016/j.cej.2021.132646

    4. [4]

      Wang, H.; Mao, Q.; Yu, H.; Wang, S.; Xu, Y.; Li, X.; Wang, Z.; Wang, L. Enhanced electrocatalytic performance of mesoporous Au-Rh bimetallic films for ammonia synthesis. Chem. Eng. J. 2021, 418, 129493.  doi: 10.1016/j.cej.2021.129493

    5. [5]

      Cheng, X. L.; Li, L. Q.; Han, Y. F.; Tan, Q. L.; Xia, Q. Y. DFT investigation on the enantioselectivity of olefin carboacylation catalyzed by a Rh(I) complex. Chin. J. Struct. Chem. 2020, 39, 630.

    6. [6]

      Wang, Z.; Tian, W.; Yu, H.; Zhou, T.; Wang, P.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Phosphorus modulation of a mesoporous rhodium film for enhanced nitrogen electroreduction. Nanoscale 2021, 13, 13809.

    7. [7]

      Fan, J.; Du, H.; Zhao, Y.; Wang, Q.; Liu, Y.; Li, D.; Feng, J. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 2020, 10, 13560.

    8. [8]

      Xu, H.; Shang, H.; Wang, C.; Du, Y. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.  doi: 10.1002/adfm.202000793

    9. [9]

      Ma, Z.; Cano, Z. P.; Yu, A.; Chen, Z.; Jiang, G.; Fu, X.; Yang, L.; Wu, T.; Bai, Z.; Lu, J. Enhancing oxygen reduction activity of Pt-based electro-catalysts: from theoretical mechanisms to practical methods. Angew. Chem. Int. Ed. 2020, 59, 18334.

    10. [10]

      Pan, S.; Ma, S.; Chang, C.; Long, X.; Qu, K.; Yang, Z. Activation of rhodium selenides for boosted hydrogen evolution reaction via hetero-structure construction. Mater. Today Phys. 2021, 18, 100401.

    11. [11]

      Lou, W.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 2022, 15, 18.

    12. [12]

      Su, B. Y.; Yan, T. Y.; Li, X. T.; Pan, D. D.; Faida, P.; Ding, L. Q. Influence of the substituents on imino-aryl ring of Mono(imino)pyrrole-Ni-II complexes to their ethylene polymerization catalytic performance. Chin. J. Struct. Chem. 2020, 39, 1093.

    13. [13]

      Deng, K.; Ren, T.; Xu, Y.; Liu, S.; Dai, Z.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Transition metal M (M = Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A 2020, 8, 5595.

    14. [14]

      Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO2 reduction. Mater. Today Phys. 2020, 15, 100279.

    15. [15]

      Wang, H.; Jiao, S.; Liu, S.; Wang, S.; Zhou, T.; Xu, Y.; Li, X.; Wang, Z.; Wang, L. Mesoporous bimetallic Au@Rh core-shell nanowires as efficient electrocatalysts for pH-universal hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 30479.

    16. [16]

      Chen, L.; Guo, H.; Fujita, T.; Hirata, A.; Zhang, W.; Inoue, A.; Chen, M. Nanoporous PdNi vimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Adv. Funct. Mater. 2011, 21, 4364.

    17. [17]

      Gong, W.; Jiang, Z.; Wu, R.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B Environ. 2019, 246, 277.

    18. [18]

      Mao, Q.; Jiao, S.; Ren, K.; Wang, S.; Xu, Y.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Transition metal and phosphorus co-doping induced lattice strain in mesoporous Rh-based nanospheres for pH-universal hydrogen evolution electrocatalysis. Chem. Eng. J. 2021, 426, 131226.

    19. [19]

      Yu, H.; Wang, Z.; Tian, W.; Dai, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Boosting electrochemical nitrogen fixation by mesoporous Rh film with boron and sulfur co-doping. Mater. Today Energy 2021, 20, 100681.

    20. [20]

      Mitamura, K.; Yatabe, T.; Yamamoto, K.; Yabe, T.; Suzuki, K.; Yamaguchi, K. Heterogeneously Ni–Pd nanoparticle-catalyzed base-free formal C–S bond metathesis of thiols. Chem. Commun. 2021, 57, 3749.

    21. [21]

      Liang, X.; Liu, B.; Zhang, J.; Lu, S.; Zhuang, Z. Ternary Pd-Ni-P hybrid electrocatalysts derived from Pd-Ni core-shell nanoparticles with enhanced formic acid oxidation activity. Chem. Commun. 2016, 52, 11143.

    22. [22]

      Liu, F.; He, J.; Liu, X.; Chen, Y.; Liu, Z.; Chen, D.; Liu, H.; Zhou, W. MoC nanoclusters anchored Ni@N-doped carbon nanotubes coated on carbon fiber as three-dimensional and multifunctional electrodes for flexible supercapacitor and self-heating device. Carbon Energy 2021, 3, 129.

    23. [23]

      Lynch, B. B.; Kelliher, A. P.; Anderson, B. D.; Japit, A.; Spencer, M. A.; Rizvi, M. H.; Sarac, M. F.; Augustyn, V.; Tracy, J. B. Sulfidation and selenidation of nickel nanoparticles. Carbon Energy 2021, 3, 582.

    24. [24]

      Deng, K.; Xu, Y.; Yang, D. D.; Qian, X. Q.; Dai, Z. C.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Chem. A 2019, 7, 9791.

    25. [25]

      Chang, J. Q.; Song, L. T.; Xu, Y. Q.; Ma, Y. H.; Liang, C.; Jiang, W. Y.; Zhang, Y. Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation. Nano Res. 2020, 13, 67.

    26. [26]

      Huang, L.; Wei, M.; Hu, N.; Tsiakaras, P.; Shen, P. K. Molybdenum-modified and vertex-reinforced quaternary hexapod nano-skeletons as efficient electrocatalysts for methanol oxidation and oxygen reduction reaction. Appl. Catal. B Environ. 2019, 258, 117974.

    27. [27]

      Shu, C.; Tan, Q.; Deng, C.; Du, W.; Gan, Z.; Liu, Y.; Fan, C.; Jin, H.; Tang, W.; Yang, X. D.; Yang, X. H.; Wu, Y. P. Hierarchically mesoporous carbon spheres coated with a single atomic Fe-N-C layer for balancing activity and mass transfer in fuel cells. Carbon Energy 2021, 3, 582.

    28. [28]

      Gupta, D.; Chakraborty, S.; Amorim, R. G.; Ahuja, R.; Nagaiah, T. C. Local electrocatalytic activity of PtRu supported on nitrogen-doped carbon nanotubes towards methanol oxidation by scanning electrochemical microscopy. J. Mater. Chem. A 2021, 9, 21291.

    29. [29]

      Yang, X.; Wang, Q.; Qing, S.; Gao, Z.; Tong, X.; Yang, N. Modulating electronic structure of an Au-nanorod-core-PdPt-alloy-shell catalyst for efficient alcohol electro-oxidation. Adv. Energy Mater. 2021, 11, 2100812.

    30. [30]

      Zhan, X. D.; Zhan, Y. X.; Du, C. C.; Li, C. R.; Yu, H.; Lin, C. Electrochemical catalytic properties of Pt/FeSnO(OH)5 towards methanol oxidation. Chin. J. Struct. Chem. 2018, 37, 1585.

    31. [31]

      Huang, H. J.; Wei, Y. J.; Yang, Y.; Yan, M. M.; He, H. Y.; Jiang, Q. G.; Yang, X. F.; Zhu, J. X. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J. Energy Chem. 2021, 57, 601.

    32. [32]

      Yang, Y.; Huang, H. J.; Yang, C. Z.; He, H. Y. Ultrafine Rh-decorated 3D porous boron and nitrogen dual-doped graphene architecture as an efficient electrocatalyst for methanol oxidation reaction. ACS Appl. Energy Mater. 2021, 4, 376.

    33. [33]

      Gong, L. Y.; Yang, Z. Y.; Li, K.; Xing, W.; Liu, C. P.; Ge, J. J. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. J. Energy Chem. 2018, 27, 1618.

    34. [34]

      Wang, S.; Liu, S.; Wang, Z.; Dai, Z.; Yu, H.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Mesoporous Rh nanotubes for efficient electro-oxidation of methanol. J. Mater. Chem. A 2021, 9, 4744.

    35. [35]

      Hu, Q. Y.; Zhang, R. H.; Chen, D.; Guo, Y. F.; Zhan, W.; Luo, L. M.; Zhou, X. W. Facile aqueous phase synthesis of 3D-netlike Pd-Rh nanocatalysts for methanol oxidation. Int. J. Hydrogen Energy 2019, 44, 16287.

    36. [36]

      Bai, J.; Xiao, X.; Xue, Y. Y.; Jiang, J. X.; Zeng, J. H.; Li, X. F.; Chen, Y. Bimetallic platinum-rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2018, 10, 19755.

    37. [37]

      Bai, J.; Huang, H.; Li, F. M.; Zhao, Y.; Chen, P.; Jin, P. J.; Li, S. N.; Yao, H. C.; Zeng, J. H.; Chen, Y. Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates. J. Mater. Chem. A 2019, 7, 21149.

    38. [38]

      Tang, J. X.; Xiao, L. P.; Xiao, C.; Tian, N.; Zhou, Z. Y.; Sun, S. G. Tetrahexahedral PdRh nanocrystals with tunable composition as a highly efficient electrocatalyst for ethylene glycol oxidation. J. Mater. Chem. A 2021, 9, 11049.

    39. [39]

      Zhang, M.; Xu, Y.; Wang, S.; Liu, M.; Wang, L.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Polyethylenimine-modified bimetallic Au@Rh core-shell mesoporous nanospheres surpass Pt for pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A 2021, 9, 13080.

    40. [40]

      Chen, K.; Wang, Z.; Wang, L.; Wu, X.; Hu, B.; Liu, Z.; Wu, M. Boron Nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 2021, 13.

    41. [41]

      Li, H.; Ye, J.; Li, X.; Zhang, J.; Zhu, Y.; Zhou, Z.; Xue, Y.; Jiang, Y.; Xie, Z.; Zheng, L. Excavated RhNi alloy nanobranches enable superior CO-tolerance and CO2 selectivity at low potentials toward ethanol electro-oxidation. J. Mater. Chem. A 2019, 7, 26266.

    42. [42]

      Cao, D.; Xu, H.; Cheng, D. Construction of defect-rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values. Adv. Energy Mater. 2020, 10, 1903038.

    43. [43]

      Wang, H.; Jiao, S.; Liu, S.; Zhang, H.; Xu, Y.; Li, X.; Wang, Z.; Wang, L. PdNi/Ni nanotubes assembled by mesoporous aanoparticles for efficient alkaline ethanol oxidation reaction. Chem. Eur. J. 2021, 27, 14472.

    44. [44]

      Wang, T. J.; Li, F. M.; Huang, H.; Yin, S. W.; Chen, P.; Jin, P. J.; Chen, Y. Porous Pd-PdO nanotubes for methanol electrooxidation. Adv. Funct. Mater. 2020, 30, 2000534.

    45. [45]

      Li, H.; Fan, Q.; Ye, J.; Cao, Z.; Ma, Z.; Jiang, Y.; Zhang, J.; Cheng, J.; Xie, Z.; Zheng, L. Excavated Rh nanobranches boost ethanol electro-oxidation. Mater. Today Energy 2019, 11, 120.

    46. [46]

      Cai, S.; Wang, D.; Niu, Z.; Li, Y. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chin. J. Catal. 2013, 34, 1964.

    47. [47]

      Fang, H.; Yang, J.; Wen, M.; Wu, Q. Nanoalloy materials for chemical catalysis. Adv. Mater. 2018, 30, 1705698.

    48. [48]

      Lu, S.; Li, H.; Sun, J.; Zhuang, Z. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058.

    49. [49]

      Gu, T.; Wang, B.; Chen, S.; Yang, B. Automated generation and analysis of the complex catalytic teaction network of ethanol synthesis from syngas on Rh(111). ACS Catal. 2020, 10, 6346.

  • 加载中
    1. [1]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    5. [5]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    6. [6]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    7. [7]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    8. [8]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    9. [9]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    10. [10]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    11. [11]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    12. [12]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    13. [13]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    14. [14]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    17. [17]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    18. [18]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    19. [19]

      Qiyan WuQing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384

    20. [20]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

Metrics
  • PDF Downloads(6)
  • Abstract views(392)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return