CeO2 Particles Anchored to Ni2P Nanoplate for Efficient Photocatalytic Hydrogen Evolution
- Corresponding author: Zhiliang Jin, zl-jin@nun.edu.cn
Citation:
Teng Yan, Xiaojie Zhang, Hua Liu, Zhiliang Jin. CeO2 Particles Anchored to Ni2P Nanoplate for Efficient Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Structural Chemistry,
;2022, 41(1): 220104.
doi:
10.14102/j.cnki.0254-5861.2021-0057
Li, Y. X.; Zhang, W. Z.; Li, H.; Yang, T. Y.; Peng, S. Q.; Kao, C.; Zhang, W. Y. Ni–B coupled with borate-intercalated Ni(OH)2 for efficient and stable electrocatalytic and photocatalytic hydrogen evolution under low alkalinity. Chem. Eng. J. 2020, 394, 124928.
doi: 10.1016/j.cej.2020.124928
Cai, H.; Han, D. Y.; Wang, X. N.; Cheng, X. X.; Liu, J.; Jia, L.; Ding, Y.; Liu, S. X.; Fan, X. X. High specific surface area defective g-C3N4 nanosheets with enhanced photocatalytic activity prepared by using glyoxylic acid mediated melamine. Mater. Chem. Phys. 2020, 256, 123755.
doi: 10.1016/j.matchemphys.2020.123755
Wu, H. S.; Miao, T. F.; Shi, H. X.; Xu, Y.; Fu, X. L.; Qian, Li. Probing photocatalytic hydrogen evolution of cobalt complexes: experimental and theoretical methods. Chin. J. Struct. Chem. 2021, 40, 1696–1709.
Li, X. F.; Wu, X. F.; Liu, S. W.; Li, Y. H.; Fan, J. J.; Lv, K. L. Effects of fluorine on photocatalysis. Chin. J. Catal. 2020, 41, 1451–1467.
doi: 10.1016/S1872-2067(20)63594-X
Sun, G. T.; Xiao, B.; Shi, J. W.; Mao, S. M.; He C.; Ma D. D.; Cheng Y. H. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p–n heterojunction for significantly enhanced photocatalytic H2 evolution. J. Colloid Interface Sci. 2021, 596, 215–224.
doi: 10.1016/j.jcis.2021.03.150
Lin, X.; Du, S. W.; Li, C. H.; Li, G. J.; Li, Y. J.; Chen, F. T.; Fang, P. F. Consciously constructing the robust NiS/g-C3N4 hybrids for enhanced photocatalytic hydrogen evolution. Catal. Lett. 2020, 7, 1898–1908.
Wang, P.; Yang, M.; Tang, S. P.; Chen, F. T.; Li, Y. J. Preparation of cellular C3N4/CoSe2/GA composite photocatalyst and its CO2 reduction activity. Chem. J. Chinese U. 2021, 6, 1924–1932.
Yu, J. G.; Li, X.; Ong, W. J.; Zhang, L. Y. Design and fabrication of advanced photocatalysts. Acta Phys. -Chim. Sin. 2021, 37, 2012043.
Lai, L. J.; Xing, F. S.; Cheng, C. C.; Huang, C. J. Hierarchical 0D NiSe2/2D ZnIn2S4 nanosheet-assembled microflowers for enhanced photocatalytic hydrogen evolution. Adv. Mater. Interfaces. 2021, 8, 2100052.
doi: 10.1002/admi.202100052
Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 9, 1213–1222.
Tang, N. M.; Li, Y. J.; Chen, F. T.; Han, Z. Y. In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light. Rsc. Adv. 2018, 73, 42233–42245.
Li, Y.; Zhang, D. N.; Fan, J. J.; Xiang, Q. J. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin. J. Catal. 2021, 42, 627–636.
doi: 10.1016/S1872-2067(20)63684-1
Li, F.; Cheng, L.; Xiang, Q. J. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective. J. Mater. Chem. A 2021, 9, 23765–23782.
doi: 10.1039/D1TA06899G
Liu, H.; Yan, T.; Jin, Z. L.; Ma, Q. X. CoP nanoparticles as cocatalyst modified the CdS/NiWO4 p–n heterojunction to produce hydrogen efficiently. New J. Chem. 2020, 44, 1426–1438.
doi: 10.1039/C9NJ05977F
Cao, D.; An, H.; Yan, X. Q.; Zhao, Y. X.; Yang, G. D.; Mei, H. Fabrication of Z-scheme heterojunction of SiC/Pt/Cds nanorod for efficient photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2020, 36, 1901051.
doi: 10.3866/PKU.WHXB201901051
Zhang, J. W.; Cheng, C. C.; Xing, F. S.; Cheng, C.; Huang, C. J. 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production. Chem. Eng. J. 2021, 414, 129157.
doi: 10.1016/j.cej.2021.129157
Zhang, M. Y.; Nie, S. Y.; Cheng, T.; Feng, Y.; Zhang, C. C.; Zheng, L.; Wu, L.; Hao, W. C.; Ding, Y. Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy 2021, 90, 106635.
doi: 10.1016/j.nanoen.2021.106635
Yang, H.; Zhang, J. F.; Dai, K. Organic amine surface modified 1D CdSe0.8S0.2-DETA/2D SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 255–264.
doi: 10.1016/S1872-2067(20)63784-6
Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci. China Mater. 2020, 63, 2153–2188.
doi: 10.1007/s40843-020-1456-x
Chen, X.; Ke, X. C.; Zhang, J. F.; Yang, C. C.; Dai, K.; Liang, C. H. Insight into the synergy of amine-modified S-scheme Cd0.5Zn0.5Se/porous g-C3N4 and noble-metal-free Ni2P for boosting photocatalytic hydrogen generation. Ceram. Int. 2021, 47, 13488–13499.
doi: 10.1016/j.ceramint.2021.01.207
Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. In situ synthesis of Mo2C nanoparticles on graphene nanosheets for enhanced photocatalytic H2-production activity of TiO2. ACS Sustainable Chem. Eng. 2021, 9, 3828–3837.
doi: 10.1021/acssuschemeng.0c08903
Shen, R.; Ding, Y.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y. H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25–36.
doi: 10.1016/S1872-2067(20)63600-2
Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Constructing 1D/2D schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2021, 37, 2010059.
Sun, G. T.; Xiao, B.; Zheng, H.; Shi, J. W.; Mao, S. M.; He, C.; Li, Z. H.; Cheng, Y. H. Ascorbic acid functionalized CdS-ZnO core-shell nanorods with hydrogen spillover for greatly enhanced photocatalytic H2 evolution and outstanding photostability. J. Mater. Chem. A 2021, 9, 9735–9744.
doi: 10.1039/D1TA01089A
Ma, D. D.; Shi, J. W.; Sun, D. K.; Zou, Y. J.; Cheng, L. H.; He, C.; Wang, H. K.; Niu, C. M.; Wang, L. Z. Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: the insight into the roles of hollow channel and Au nanoparticles. Appl. Catal. B Environ. 2019, 244, 748–757.
doi: 10.1016/j.apcatb.2018.12.016
Cao, R. Y.; Yang, H. C.; Zhang, S. W.; Xu, X. J. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution. Appl. Catal. B Environ. 2019, 258, 117997.
doi: 10.1016/j.apcatb.2019.117997
Ma, D. D.; Shi, J. W.; Sun, L. W.; Sun, Y. X.; Mao, S. M.; Pu, Z. X.; He, C.; Zhang, Y. J.; He, D.; Wang, H. K.; Cheng, Y. H. Knack behind the high performance CdS/ZnS-NiS nanocomposites: optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution. Chem. Eng. J. doi. org/10.1016/j. cej. 2021.133446.
doi: 10.1016/j.cej.2021.133446
You, Z. Y.; Liao, Y. L.; Li, X.; Fan, J. J.; Xiang, Q. J. State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale. 2021, 13, 9463–9504.
doi: 10.1039/D1NR02224E
Li, Y.; Li, X.; Zhang, H. W.; Fan, J. J.; Xiang, Q. J. Design and application of active sites in g-C3N4-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88.
doi: 10.1016/j.jmst.2020.03.033
Wen. P.; Zhao, K. F.; Li, H.; Li, J. S.; Li, J.; Ma, Q; Geyer, S. M.; Jiang, L.; Qiu, Y. J. In situ decorated Ni2P nanocrystal co-catalysts on g-C3N4 for efficient and stable photocatalytic hydrogen evolution via a facile co-heating method. J. Mater. Chem. A 2020, 8, 2995–3004.
doi: 10.1039/C9TA08361H
Shi, J. W.; Zou, Y. J.; Cheng, L. H.; Ma, D. D.; Sun, D. K.; Mao, S. M.; Sun, L. W.; He, C.; Wang, Z. Y. In-situ phosphating to synthesize Ni2P decorated NiO/g-C3N4 p-n junction for enhanced photocatalytic hydrogen production. Chem. Eng. J. 2019, 378, 122161.
doi: 10.1016/j.cej.2019.122161
Mohanty, B.; Chattopadhyay, A.; Nayak, J. Band gap engineering and enhancement of electrical conductivity in hydrothermally synthesized CeO2-PbS nanocomposites for solar cell applications. J. Alloys Compd. 2021, 850, 156735.
doi: 10.1016/j.jallcom.2020.156735
Li, P.; Zhou, Y.; Zhao, Z. Y.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Hexahedron prism-anchored octahedronal CeO2: crystal facet based homojunction promoting efficient solar fuel synthesis. J. Am. Chem. Soc. 2015, 13, 79547–9550.
Wang, D.; Yin, F. X.; Cheng, B.; Xia, Y.; Yu, J. G.; Ho, W. K. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 2021, 40, 2369–2380.
doi: 10.1007/s12598-021-01731-2
Ma, Y. J.; Bian, Y.; Liu, Y.; Zhu, A. Q.; Wu, H.; Cui, H.; Chu, D. W.; Pan J. Construction of Z-scheme system for enhanced photocatalytic H2 evolution based on CdS quantum dots/CeO2 nanorods heterojunction. ACS Sustainable Chem. Eng. 2017, 6, 2552–2562.
Ma, Y. J.; Ou, P. F.; Wang, Z. Y.; Zhu, A. Q.; Lu, L. L.; Zhang, Y. H.; Zeng, W. X.; Song, J.; Pan, J. Interface engineering in CeO2 (111) facets decorated with CdSe quantum dots for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 579, 707–713.
doi: 10.1016/j.jcis.2020.06.100
Suman.; Singh, S.; Ankita.; Kumar, A.; Kataria, N.; Kumar, S.; Kumar, P. Photocatalytic activity of α-Fe2O3@CeO2 and CeO2@α-Fe2O3 core-shell nanoparticles for degradation of Rose Bengal dye. J. Environ. Chem. Eng. 2021, 9, 106266.
doi: 10.1016/j.jece.2021.106266
Zou, W. X.; Shao, Y.; Pu, Y.; Luo, Y. D.; Sun, J. F.; Ma, K. L.; Tang, C. J.; Gao, F.; Dong, L. Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Appl. Catal. B Environ. 2017, 218, 51–59.
doi: 10.1016/j.apcatb.2017.03.085
Li, P. Y.; Hong, W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365–1371.
Wang, Q.; Liu, Z. Q.; Zhao, H. Y.; Huang, H.; Jiao, H.; Du, Y. P. MOF-derived porous Ni2P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 18720–18727.
doi: 10.1039/C8TA06491A
Dong, B.; Li, L. Y.; Dong, Z. F.; Xu, R.; Wu, Y. Fabrication of CeO2 nanorods for enhanced solar photocatalysts. Int. J. Hydrogen Energy 2018, 43, 5275–5282.
doi: 10.1016/j.ijhydene.2017.10.061
Luo, X.; Li, R.; Homewood, K. P.; Chen, X. X.; Gao, Y. Hybrid 0D/2D Ni2P quantum dot loaded TiO2(B) nanosheet photothermal catalysts for enhanced hydrogen evolution. Appl. Surf. Sci. 2020, 505, 144099.
doi: 10.1016/j.apsusc.2019.144099
Liu, Y. R.; Hu, W. H.; Li, X.; Dong, B.; Shang, X.; Han, G. Q.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction. Appl. Surf. Sci. 2016, 383, 276–282.
doi: 10.1016/j.apsusc.2016.04.190
Li, T.; Jin, Z. L. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: role of Ni2P for accelerating separation of photogenerated carriers. J. Colloid Interface Sci. 2022, 605, 385–397.
doi: 10.1016/j.jcis.2021.07.098
Li, T.; Wang, X. F.; Jin, Z. L. MoC quantum dots modified by CeO2 dispersed in ultra-thin carbon films for efficient photocatalytic hydrogen evolution. Mol. Catal. 2021, 513, 111829.
doi: 10.1016/j.mcat.2021.111829
Yan, T.; Liu H.; Jin, Z. J. Graphdiyne based ternary GD-CuI-NiTiO3 S-scheme heterjunction photocatalystfor hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 24896–24906.
doi: 10.1021/acsami.1c04874
Li, D. J.; Ma, X. L.; Su, P.; Yang, S. J.; Jiang, Z. B.; Li, Y. J.; Jin, Z. J. Effect of phosphating on NiAl-LDH layered double hydroxide form S-scheme heterojunction for photocatalytic hydrogen evolution. Mol. Catal. 2021, 516, 111990.
doi: 10.1016/j.mcat.2021.111990
Wang, Y. P.; Hao, X. Q.; Zhang, L. J.; Jin, Z. L.; Zhao T. S. Amorphous Co3S4 nanoparticle-modified tubular g-C3N4 forms step-scheme heterojunctions for photocatalytic hydrogen production. Catal. Sci. Technol. 2021, 11, 943.
doi: 10.1039/D0CY02009E
Li, H. J.; Gao, Y. Y.; Zhou, Y.; Fan, F. T.; Han, Q. T.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Li, C.; Zou, Z. G. Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO3/Au/In2S3 nanowire arrays. Nano Lett. 2016, 16, 5547–5552.
doi: 10.1021/acs.nanolett.6b02094
Meng, X. B.; Sheng, J. L.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl. Catal. B Environ. 2019, 244, 340–346.
doi: 10.1016/j.apcatb.2018.11.018
Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 2021, 33, 2003521.
doi: 10.1002/adma.202003521
Liu, Y.; Sun, Y. P.; Xu, J.; Mao, M.; Li, X. H. A Z-scheme heterostructure constructed from ZnS nanospheres and Ni(OH)2 nanosheets to enhance the photocatalytic hydrogen evolution. New J. Chem. 2021, 45, 7781.
doi: 10.1039/D1NJ00465D
Yan, T.; Liu, H.; Jin, Z. L. g-C3N4/α-Fe2O3 supported zero-dimensional Co3S4 nanoparticles form S-scheme heterojunction photocatalyst for efficient hydrogen production. Energy Fuels. 2021, 35, 856–867.
doi: 10.1021/acs.energyfuels.0c03351
Liu, Y.; Xu, J.; Ding, Z. F.; Mao, M.; Li, L. J. Marigold shaped mesoporous composites Bi2S3/Ni(OH)2 with n–n heterojunction for high efficiency photocatalytic hydrogen production from water decomposition. Chem. Phys. Lett. 2021, 766, 138337.
doi: 10.1016/j.cplett.2021.138337
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845