Citation: Teng Yan, Xiaojie Zhang, Hua Liu, Zhiliang Jin. CeO2 Particles Anchored to Ni2P Nanoplate for Efficient Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220104. doi: 10.14102/j.cnki.0254-5861.2021-0057 shu

CeO2 Particles Anchored to Ni2P Nanoplate for Efficient Photocatalytic Hydrogen Evolution

  • Corresponding author: Zhiliang Jin, zl-jin@nun.edu.cn
  • Received Date: 16 December 2021
    Accepted Date: 6 January 2022

Figures(5)

  • Photocatalytic hydrogen evolution can convert intermittent and dispersive solar energy into hydrogen with high energy density, which is expected to fundamentally solve the problems of environmental pollution and energy shortages. In this experiment, the performance of the catalyst is modified by introducing cocatalyst and morphology control. Ni(OH)2 nanoflowers are used as substrates to derive nanoplate stack Ni2P by high-temperature phosphating method, and a great many of CeO2 nanoparticles are anchored in the Ni2P. This unique 3D/0D combination effectively inhibits the agglomeration of CeO2 nanoparticles and shortens the electron transfer path. Secondly, the introduction of metal-like performance of Ni2P broadens the light absorption range of the catalyst and reduces the overpotential of the catalyst, which is a key factor in enhancing the catalytic activity. The design ideas of this experiment have reference significance for the design of efficient and environmentally friendly photocatalysts.
  • 加载中
    1. [1]

      Li, Y. X.; Zhang, W. Z.; Li, H.; Yang, T. Y.; Peng, S. Q.; Kao, C.; Zhang, W. Y. Ni–B coupled with borate-intercalated Ni(OH)2 for efficient and stable electrocatalytic and photocatalytic hydrogen evolution under low alkalinity. Chem. Eng. J. 2020, 394, 124928.  doi: 10.1016/j.cej.2020.124928

    2. [2]

      Cai, H.; Han, D. Y.; Wang, X. N.; Cheng, X. X.; Liu, J.; Jia, L.; Ding, Y.; Liu, S. X.; Fan, X. X. High specific surface area defective g-C3N4 nanosheets with enhanced photocatalytic activity prepared by using glyoxylic acid mediated melamine. Mater. Chem. Phys. 2020, 256, 123755.  doi: 10.1016/j.matchemphys.2020.123755

    3. [3]

      Wu, H. S.; Miao, T. F.; Shi, H. X.; Xu, Y.; Fu, X. L.; Qian, Li. Probing photocatalytic hydrogen evolution of cobalt complexes: experimental and theoretical methods. Chin. J. Struct. Chem. 2021, 40, 1696–1709.

    4. [4]

      Li, X. F.; Wu, X. F.; Liu, S. W.; Li, Y. H.; Fan, J. J.; Lv, K. L. Effects of fluorine on photocatalysis. Chin. J. Catal. 2020, 41, 1451–1467.  doi: 10.1016/S1872-2067(20)63594-X

    5. [5]

      Sun, G. T.; Xiao, B.; Shi, J. W.; Mao, S. M.; He C.; Ma D. D.; Cheng Y. H. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p–n heterojunction for significantly enhanced photocatalytic H2 evolution. J. Colloid Interface Sci. 2021, 596, 215–224.  doi: 10.1016/j.jcis.2021.03.150

    6. [6]

      Lin, X.; Du, S. W.; Li, C. H.; Li, G. J.; Li, Y. J.; Chen, F. T.; Fang, P. F. Consciously constructing the robust NiS/g-C3N4 hybrids for enhanced photocatalytic hydrogen evolution. Catal. Lett. 2020, 7, 1898–1908.

    7. [7]

      Wang, P.; Yang, M.; Tang, S. P.; Chen, F. T.; Li, Y. J. Preparation of cellular C3N4/CoSe2/GA composite photocatalyst and its CO2 reduction activity. Chem. J. Chinese U. 2021, 6, 1924–1932.

    8. [8]

      Yu, J. G.; Li, X.; Ong, W. J.; Zhang, L. Y. Design and fabrication of advanced photocatalysts. Acta Phys. -Chim. Sin. 2021, 37, 2012043.

    9. [9]

      Lai, L. J.; Xing, F. S.; Cheng, C. C.; Huang, C. J. Hierarchical 0D NiSe2/2D ZnIn2S4 nanosheet-assembled microflowers for enhanced photocatalytic hydrogen evolution. Adv. Mater. Interfaces. 2021, 8, 2100052.  doi: 10.1002/admi.202100052

    10. [10]

      Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 9, 1213–1222.

    11. [11]

      Tang, N. M.; Li, Y. J.; Chen, F. T.; Han, Z. Y. In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light. Rsc. Adv. 2018, 73, 42233–42245.

    12. [12]

      Li, Y.; Zhang, D. N.; Fan, J. J.; Xiang, Q. J. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin. J. Catal. 2021, 42, 627–636.  doi: 10.1016/S1872-2067(20)63684-1

    13. [13]

      Li, F.; Cheng, L.; Xiang, Q. J. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective. J. Mater. Chem. A 2021, 9, 23765–23782.  doi: 10.1039/D1TA06899G

    14. [14]

      Liu, H.; Yan, T.; Jin, Z. L.; Ma, Q. X. CoP nanoparticles as cocatalyst modified the CdS/NiWO4 p–n heterojunction to produce hydrogen efficiently. New J. Chem. 2020, 44, 1426–1438.  doi: 10.1039/C9NJ05977F

    15. [15]

      Cao, D.; An, H.; Yan, X. Q.; Zhao, Y. X.; Yang, G. D.; Mei, H. Fabrication of Z-scheme heterojunction of SiC/Pt/Cds nanorod for efficient photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2020, 36, 1901051.  doi: 10.3866/PKU.WHXB201901051

    16. [16]

      Zhang, J. W.; Cheng, C. C.; Xing, F. S.; Cheng, C.; Huang, C. J. 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production. Chem. Eng. J. 2021, 414, 129157.  doi: 10.1016/j.cej.2021.129157

    17. [17]

      Zhang, M. Y.; Nie, S. Y.; Cheng, T.; Feng, Y.; Zhang, C. C.; Zheng, L.; Wu, L.; Hao, W. C.; Ding, Y. Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy 2021, 90, 106635.  doi: 10.1016/j.nanoen.2021.106635

    18. [18]

      Yang, H.; Zhang, J. F.; Dai, K. Organic amine surface modified 1D CdSe0.8S0.2-DETA/2D SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 255–264.  doi: 10.1016/S1872-2067(20)63784-6

    19. [19]

      Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci. China Mater. 2020, 63, 2153–2188.  doi: 10.1007/s40843-020-1456-x

    20. [20]

      Chen, X.; Ke, X. C.; Zhang, J. F.; Yang, C. C.; Dai, K.; Liang, C. H. Insight into the synergy of amine-modified S-scheme Cd0.5Zn0.5Se/porous g-C3N4 and noble-metal-free Ni2P for boosting photocatalytic hydrogen generation. Ceram. Int. 2021, 47, 13488–13499.  doi: 10.1016/j.ceramint.2021.01.207

    21. [21]

      Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. In situ synthesis of Mo2C nanoparticles on graphene nanosheets for enhanced photocatalytic H2-production activity of TiO2. ACS Sustainable Chem. Eng. 2021, 9, 3828–3837.  doi: 10.1021/acssuschemeng.0c08903

    22. [22]

      Shen, R.; Ding, Y.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y. H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25–36.  doi: 10.1016/S1872-2067(20)63600-2

    23. [23]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Constructing 1D/2D schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2021, 37, 2010059.

    24. [24]

      Sun, G. T.; Xiao, B.; Zheng, H.; Shi, J. W.; Mao, S. M.; He, C.; Li, Z. H.; Cheng, Y. H. Ascorbic acid functionalized CdS-ZnO core-shell nanorods with hydrogen spillover for greatly enhanced photocatalytic H2 evolution and outstanding photostability. J. Mater. Chem. A 2021, 9, 9735–9744.  doi: 10.1039/D1TA01089A

    25. [25]

      Ma, D. D.; Shi, J. W.; Sun, D. K.; Zou, Y. J.; Cheng, L. H.; He, C.; Wang, H. K.; Niu, C. M.; Wang, L. Z. Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: the insight into the roles of hollow channel and Au nanoparticles. Appl. Catal. B Environ. 2019, 244, 748–757.  doi: 10.1016/j.apcatb.2018.12.016

    26. [26]

      Cao, R. Y.; Yang, H. C.; Zhang, S. W.; Xu, X. J. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution. Appl. Catal. B Environ. 2019, 258, 117997.  doi: 10.1016/j.apcatb.2019.117997

    27. [27]

      Ma, D. D.; Shi, J. W.; Sun, L. W.; Sun, Y. X.; Mao, S. M.; Pu, Z. X.; He, C.; Zhang, Y. J.; He, D.; Wang, H. K.; Cheng, Y. H. Knack behind the high performance CdS/ZnS-NiS nanocomposites: optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution. Chem. Eng. J. doi. org/10.1016/j. cej. 2021.133446.  doi: 10.1016/j.cej.2021.133446

    28. [28]

      You, Z. Y.; Liao, Y. L.; Li, X.; Fan, J. J.; Xiang, Q. J. State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale. 2021, 13, 9463–9504.  doi: 10.1039/D1NR02224E

    29. [29]

      Li, Y.; Li, X.; Zhang, H. W.; Fan, J. J.; Xiang, Q. J. Design and application of active sites in g-C3N4-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88.  doi: 10.1016/j.jmst.2020.03.033

    30. [30]

      Wen. P.; Zhao, K. F.; Li, H.; Li, J. S.; Li, J.; Ma, Q; Geyer, S. M.; Jiang, L.; Qiu, Y. J. In situ decorated Ni2P nanocrystal co-catalysts on g-C3N4 for efficient and stable photocatalytic hydrogen evolution via a facile co-heating method. J. Mater. Chem. A 2020, 8, 2995–3004.  doi: 10.1039/C9TA08361H

    31. [31]

      Shi, J. W.; Zou, Y. J.; Cheng, L. H.; Ma, D. D.; Sun, D. K.; Mao, S. M.; Sun, L. W.; He, C.; Wang, Z. Y. In-situ phosphating to synthesize Ni2P decorated NiO/g-C3N4 p-n junction for enhanced photocatalytic hydrogen production. Chem. Eng. J. 2019, 378, 122161.  doi: 10.1016/j.cej.2019.122161

    32. [32]

      Mohanty, B.; Chattopadhyay, A.; Nayak, J. Band gap engineering and enhancement of electrical conductivity in hydrothermally synthesized CeO2-PbS nanocomposites for solar cell applications. J. Alloys Compd. 2021, 850, 156735.  doi: 10.1016/j.jallcom.2020.156735

    33. [33]

      Li, P.; Zhou, Y.; Zhao, Z. Y.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Hexahedron prism-anchored octahedronal CeO2: crystal facet based homojunction promoting efficient solar fuel synthesis. J. Am. Chem. Soc. 2015, 13, 79547–9550.

    34. [34]

      Wang, D.; Yin, F. X.; Cheng, B.; Xia, Y.; Yu, J. G.; Ho, W. K. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 2021, 40, 2369–2380.  doi: 10.1007/s12598-021-01731-2

    35. [35]

      Ma, Y. J.; Bian, Y.; Liu, Y.; Zhu, A. Q.; Wu, H.; Cui, H.; Chu, D. W.; Pan J. Construction of Z-scheme system for enhanced photocatalytic H2 evolution based on CdS quantum dots/CeO2 nanorods heterojunction. ACS Sustainable Chem. Eng. 2017, 6, 2552–2562.

    36. [36]

      Ma, Y. J.; Ou, P. F.; Wang, Z. Y.; Zhu, A. Q.; Lu, L. L.; Zhang, Y. H.; Zeng, W. X.; Song, J.; Pan, J. Interface engineering in CeO2 (111) facets decorated with CdSe quantum dots for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 579, 707–713.  doi: 10.1016/j.jcis.2020.06.100

    37. [37]

      Suman.; Singh, S.; Ankita.; Kumar, A.; Kataria, N.; Kumar, S.; Kumar, P. Photocatalytic activity of α-Fe2O3@CeO2 and CeO2@α-Fe2O3 core-shell nanoparticles for degradation of Rose Bengal dye. J. Environ. Chem. Eng. 2021, 9, 106266.  doi: 10.1016/j.jece.2021.106266

    38. [38]

      Zou, W. X.; Shao, Y.; Pu, Y.; Luo, Y. D.; Sun, J. F.; Ma, K. L.; Tang, C. J.; Gao, F.; Dong, L. Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Appl. Catal. B Environ. 2017, 218, 51–59.  doi: 10.1016/j.apcatb.2017.03.085

    39. [39]

      Li, P. Y.; Hong, W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365–1371.

    40. [40]

      Wang, Q.; Liu, Z. Q.; Zhao, H. Y.; Huang, H.; Jiao, H.; Du, Y. P. MOF-derived porous Ni2P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 18720–18727.  doi: 10.1039/C8TA06491A

    41. [41]

      Dong, B.; Li, L. Y.; Dong, Z. F.; Xu, R.; Wu, Y. Fabrication of CeO2 nanorods for enhanced solar photocatalysts. Int. J. Hydrogen Energy 2018, 43, 5275–5282.  doi: 10.1016/j.ijhydene.2017.10.061

    42. [42]

      Luo, X.; Li, R.; Homewood, K. P.; Chen, X. X.; Gao, Y. Hybrid 0D/2D Ni2P quantum dot loaded TiO2(B) nanosheet photothermal catalysts for enhanced hydrogen evolution. Appl. Surf. Sci. 2020, 505, 144099.  doi: 10.1016/j.apsusc.2019.144099

    43. [43]

      Liu, Y. R.; Hu, W. H.; Li, X.; Dong, B.; Shang, X.; Han, G. Q.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction. Appl. Surf. Sci. 2016, 383, 276–282.  doi: 10.1016/j.apsusc.2016.04.190

    44. [44]

      Li, T.; Jin, Z. L. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: role of Ni2P for accelerating separation of photogenerated carriers. J. Colloid Interface Sci. 2022, 605, 385–397.  doi: 10.1016/j.jcis.2021.07.098

    45. [45]

      Li, T.; Wang, X. F.; Jin, Z. L. MoC quantum dots modified by CeO2 dispersed in ultra-thin carbon films for efficient photocatalytic hydrogen evolution. Mol. Catal. 2021, 513, 111829.  doi: 10.1016/j.mcat.2021.111829

    46. [46]

      Yan, T.; Liu H.; Jin, Z. J. Graphdiyne based ternary GD-CuI-NiTiO3 S-scheme heterjunction photocatalystfor hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 24896–24906.  doi: 10.1021/acsami.1c04874

    47. [47]

      Li, D. J.; Ma, X. L.; Su, P.; Yang, S. J.; Jiang, Z. B.; Li, Y. J.; Jin, Z. J. Effect of phosphating on NiAl-LDH layered double hydroxide form S-scheme heterojunction for photocatalytic hydrogen evolution. Mol. Catal. 2021, 516, 111990.  doi: 10.1016/j.mcat.2021.111990

    48. [48]

      Wang, Y. P.; Hao, X. Q.; Zhang, L. J.; Jin, Z. L.; Zhao T. S. Amorphous Co3S4 nanoparticle-modified tubular g-C3N4 forms step-scheme heterojunctions for photocatalytic hydrogen production. Catal. Sci. Technol. 2021, 11, 943.  doi: 10.1039/D0CY02009E

    49. [49]

      Li, H. J.; Gao, Y. Y.; Zhou, Y.; Fan, F. T.; Han, Q. T.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Li, C.; Zou, Z. G. Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO3/Au/In2S3 nanowire arrays. Nano Lett. 2016, 16, 5547–5552.  doi: 10.1021/acs.nanolett.6b02094

    50. [50]

      Meng, X. B.; Sheng, J. L.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl. Catal. B Environ. 2019, 244, 340–346.  doi: 10.1016/j.apcatb.2018.11.018

    51. [51]

      Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 2021, 33, 2003521.  doi: 10.1002/adma.202003521

    52. [52]

      Liu, Y.; Sun, Y. P.; Xu, J.; Mao, M.; Li, X. H. A Z-scheme heterostructure constructed from ZnS nanospheres and Ni(OH)2 nanosheets to enhance the photocatalytic hydrogen evolution. New J. Chem. 2021, 45, 7781.  doi: 10.1039/D1NJ00465D

    53. [53]

      Yan, T.; Liu, H.; Jin, Z. L. g-C3N4/α-Fe2O3 supported zero-dimensional Co3S4 nanoparticles form S-scheme heterojunction photocatalyst for efficient hydrogen production. Energy Fuels. 2021, 35, 856–867.  doi: 10.1021/acs.energyfuels.0c03351

    54. [54]

      Liu, Y.; Xu, J.; Ding, Z. F.; Mao, M.; Li, L. J. Marigold shaped mesoporous composites Bi2S3/Ni(OH)2 with n–n heterojunction for high efficiency photocatalytic hydrogen production from water decomposition. Chem. Phys. Lett. 2021, 766, 138337.  doi: 10.1016/j.cplett.2021.138337

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    3. [3]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    8. [8]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    12. [12]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    13. [13]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    16. [16]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    17. [17]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    18. [18]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    19. [19]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    20. [20]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

Metrics
  • PDF Downloads(8)
  • Abstract views(494)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return