Citation: Jing Zou, Guodong Liao, Jizhou Jiang, Zhiguo Xiong, Saishuai Bai, Haitao Wang, Pingxiu Wu, Peng Zhang, Xin Li. In-situ Construction of Sulfur-doped g-C3N4/defective g-C3N4 Isotype Step-scheme Heterojunction for Boosting Photocatalytic H2 Evolution[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220102. doi: 10.14102/j.cnki.0254-5861.2021-0039 shu

In-situ Construction of Sulfur-doped g-C3N4/defective g-C3N4 Isotype Step-scheme Heterojunction for Boosting Photocatalytic H2 Evolution

Figures(6)

  • The rational construction of a high-efficiency step-scheme heterojunctions is an effective strategy to accelerate the photocatalytic H2. Unfortunately, the variant energy-level matching between two different semiconductor confers limited the photocatalytic performance. Herein, a newfangled graphitic-carbon nitride (g-C3N4) based isotype step-scheme heterojunction, which consists of sulfur-doped and defective active sites in one microstructural unit, is successfully developed by in-situ polymerizing N, N-dimethyl-formamide (DMF) and urea, accompanied by sulfur (S) powder. Therein, the polymerization between the amino groups of DMF and the amide group of urea endows the formation of rich defects. The propulsive integration of S-dopants contributes to the excellent fluffiness and dispersibility of lamellar g-C3N4. Moreover, the developed heterojunction exhibits a significantly enlarged surface area, thus leading to the more exposed catalytically active sites. Most importantly, the simultaneous introduction of S-doping and defects in the units of g-C3N4 also results in a significant improvement in the separation, transfer and recombination efficiency of photo-excited electron-hole pairs. Therefore, the resulting isotype step-scheme heterojunction possesses a superior photocatalytic H2 evolution activity in comparison with pristine g-C3N4. The newly afforded metal-free isotype step-scheme heterojunction in this work will supply a new insight into coupling strategies of heteroatoms doping and defect engineering for various photocatalytic systems.
  • 加载中
    1. [1]

      Liao, G. F.; Gong, Y.; Zhang, L.; Gao, H. Y.; Yang, G. J.; Fang, B. Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail" for the photocatalytic hydrogen evolution reaction under visible light. Energ. Environ. Sci. 2019, 12, 2080–2147.  doi: 10.1039/C9EE00717B

    2. [2]

      Liang, Z. Z.; Shen, R. C.; Ng, Y. H.; Zhang, P.; Xiang, Q. J.; Li, X. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J. Mater. Sci. Technol. 2020, 56, 89–121.  doi: 10.1016/j.jmst.2020.04.032

    3. [3]

      Nasir, J. A.; Munir, A.; Ahmad, N.; ul Haq, T.; Khan, Z.; Rehman, Z. Photocatalytic Z-scheme overall water splitting: recent advances in theory and experiments. Adv. Mater. 2021, 2105195.

    4. [4]

      He, K. L.; Xie, J.; Liu, Z. Q.; Li, N.; Chen, X. B.; Hu, J.; Li, X. Multifunctional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J. Mater. Chem. A 2018, 6, 13110–13122.  doi: 10.1039/C8TA03048K

    5. [5]

      Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.  doi: 10.1039/C8CS00542G

    6. [6]

      Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C. 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett. 2019, 4, 1687–1709.  doi: 10.1021/acsenergylett.9b00940

    7. [7]

      Ai, L.; Shi, R.; Yang, J.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Efficient combination of g-C3N4 and CDs for enhanced photocatalytic performance: a review of synthesis, strategies, and applications. Small 2021, 2007523.

    8. [8]

      Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37.  doi: 10.1038/238037a0

    9. [9]

      Xing, W. N.; Tu, W. G.; Ou, M.; Wu, S. Y.; Yin, S. M.; Wang, H. J.; Chen, G.; Xu, R. Anchoring active Pt2+/Pt0 hybrid nanodots on g-C3N4 nitrogen vacancies for photocatalytic H2 evolution. ChemSusChem 2019, 12, 2029–2034.  doi: 10.1002/cssc.201801431

    10. [10]

      Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.  doi: 10.1126/science.aaa3145

    11. [11]

      Jiang, H.; Xing, Z.; Zhao, T.; Yang, Z.; Wang, K.; Li, Z.; Yang, S.; Xie, L.; Zhou, W. Plasmon Ag nanoparticle/Bi2S3 ultrathin nanobelt/oxygen-doped flower-like MoS2 nanosphere ternary heterojunctions for promoting charge separation and enhancing solar-driven photothermal and photocatalytic performances. Appl. Catal., B: Environ. 2020, 274, 118947.  doi: 10.1016/j.apcatb.2020.118947

    12. [12]

      Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.  doi: 10.1039/C3CS60378D

    13. [13]

      Jiang, J.; Ou-yang, L.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.  doi: 10.1016/j.carbon.2014.08.059

    14. [14]

      Xia, P.; Cheng, B.; Jiang, J.; Tang, H. Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Appl. Surf. Sci. 2019, 487, 335–342.  doi: 10.1016/j.apsusc.2019.05.064

    15. [15]

      Jiang, J.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q.; Zhang, H.; Li, L. J.; Zhai, T.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.  doi: 10.1039/C9CS00348G

    16. [16]

      Xu, C. Q.; Zhang, W. D.; Deguchi, K.; Ohki, S.; Shimizu, T.; Ma, R.; Sasaki, T. Construction of a push-pull system in g-C3N4 for efficient photocatalytic hydrogen evolution under visible light. J. Mater. Chem. A 2020, 8, 13299–13310.  doi: 10.1039/C9TA13513H

    17. [17]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218–5225.  doi: 10.1002/anie.201916012

    18. [18]

      Wang, Y.; Liu, L.; Ma, T.; Zhang, Y.; Huang, H. 2D graphitic carbon nitride for energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2102540.  doi: 10.1002/adfm.202102540

    19. [19]

      Tu, W.; Xu, Y.; Wang, J.; Zhang, B.; Zou, T.; Yin, S.; Wu, S.; Li, C.; Huang, Y.; Zhou, Y.; Robertson, J.; Kraft, M.; Xu, R. Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustain. Chem. Eng. 2017, 5, 7260–7268.  doi: 10.1021/acssuschemeng.7b01477

    20. [20]

      Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F.; Pan, Z.; Sun, Z.; Wei, S. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139, 3021–3026.  doi: 10.1021/jacs.6b11878

    21. [21]

      Luo, J.; Wang, M.; Chen, L.; Shi, J. Efficient benzaldehyde photosynthesis coupling photocatalytic hydrogen evolution. J. Energy Chem. 2022, 66, 52–60.  doi: 10.1016/j.jechem.2021.07.017

    22. [22]

      Liang, J.; Yang, X.; Wang, Y.; He, P.; Fu, H.; Zhao, Y.; Zou, Q.; An, X. A review on g-C3N4 incorporated with organics for enhanced photocatalytic water splitting. J. Mater. Chem. A 2021, 9, 12898–12922.  doi: 10.1039/D1TA00890K

    23. [23]

      Yang, W.; Ma, G.; Fu, Y.; Peng, K.; Yang, H.; Zhan, X.; Yang, W.; Wang, L.; Hou, H. Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 429, 132381.  doi: 10.1016/j.cej.2021.132381

    24. [24]

      Yan, J.; Wang, T.; Qiu, S.; Song, Z.; Zhu, W.; Liu, X.; Lian, J.; Sun, C.; Li, H. Insights into the efficient charge separation over Nb2O5/2D-C3N4 heterostructure for exceptional visible-light driven H2 evolution. J. Energy Chem. 2022, 65, 548–555.  doi: 10.1016/j.jechem.2021.06.030

    25. [25]

      Xi, Y.; Chen, W.; Dong, W.; Fan, Z.; Wang, K.; Shen, Y.; Tu, G.; Zhong, S.; Bai, S. Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field. ACS Appl. Mater. Interfaces 2021, 13, 39491–39500.  doi: 10.1021/acsami.1c11233

    26. [26]

      Gogoi, D.; Shah, A. K.; Rambabu, P.; Qureshi, M.; Golder, A. K.; Peela, N. R. Step-scheme heterojunction between CdS nanowires and facet-selective assembly of MnOx-BiVO4 for an efficient visible-light-driven overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 45475–45487.  doi: 10.1021/acsami.1c11740

    27. [27]

      Zou, J.; Deng, W.; Jiang, J.; Arramel; He, X.; Li, N.; Fang, J.; Hsu, J. P. Built-in electric field-assisted step-scheme heterojunction of carbon nitride-copper oxide for highly selective electrochemical detection of p-nonylphenol. Electrochim. Acta 2020, 354, 136658.  doi: 10.1016/j.electacta.2020.136658

    28. [28]

      Li, Y. F.; Zhou, M. H.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17.  doi: 10.1016/j.jmst.2020.04.028

    29. [29]

      Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhang, P. A new heterojunction in photocatalysis: S-scheme heterojunction. Chin. J. Catal. 2021, 42, 667–669.  doi: 10.1016/S1872-2067(20)63705-6

    30. [30]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.  doi: 10.1016/j.chempr.2020.06.010

    31. [31]

      Wang, Y.; Hao, X.; Zhang, L.; Jin, Z.; Zhao, T. Amorphous Co3S4 nanoparticle-modified tubular g-C3N4 forms step-scheme heterojunctions for photocatalytic hydrogen production. Catal. Sci. Technol. 2021, 11, 943–955.  doi: 10.1039/D0CY02009E

    32. [32]

      Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nano-composite with effective interfacial charge transfer and mechanism insight. Appl. Catal. B: Environ. 2021, 280, 119452.  doi: 10.1016/j.apcatb.2020.119452

    33. [33]

      Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye, L. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 404, 126498.  doi: 10.1016/j.cej.2020.126498

    34. [34]

      Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2022, 38, 2108028.

    35. [35]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal., B: Environ. 2019, 243, 556–565.  doi: 10.1016/j.apcatb.2018.11.011

    36. [36]

      Li, B.; Zhang, B.; Zhang, Y.; Zhang, M.; Huang, W.; Yu, C.; Sun, J.; Feng, J.; Dong, S.; Sun, J. Porous g-C3N4/TiO2 S-scheme heterojunction photocatalyst for visible-light driven H2 production and simultaneous wastewater purification. Int. J. Hydrogen Energy 2021, 46, 32413–32424.  doi: 10.1016/j.ijhydene.2021.07.090

    37. [37]

      Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure. J. Mater. Sci. Technol. 2020, 56, 206–215.  doi: 10.1016/j.jmst.2020.03.034

    38. [38]

      Song, T.; Xie, C.; Matras-Postolek, K.; Yang, P. 2D Layered g-C3N4/WO3/WS2 S-scheme heterojunctions with enhanced photochemical performance. J. Phys. Chem. C 2021, 125, 19382–19393.  doi: 10.1021/acs.jpcc.1c06753

    39. [39]

      Huang, Y.; Liu, J.; Zhao, C.; Jia, X.; Ma, M.; Qian, Y.; Yang, C.; Liu, K.; Tan, F.; Wang, Z.; Li, X.; Qu, S.; Wang, Z. Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production. ACS Appl. Mater. Interfaces 2020, 12, 52603–52614.  doi: 10.1021/acsami.0c14262

    40. [40]

      Cui, M.; Cui, K.; Liu, X.; Chen, X.; Chen, Y.; Guo, Z. Roles of alkali metal dopants and surface defects on polymeric carbon nitride in photocatalytic peroxymonosulfate activation towards water decontamination. J. Hazard. Mater. 2022, 424, 127292.  doi: 10.1016/j.jhazmat.2021.127292

    41. [41]

      Yu, G.; Zhao, H.; Xing, C.; Guo, L.; Li, X. Creation of carbon defects and in-plane holes with the assistance of NH4Br to enhance the photocatalytic activity of g-C3N4. Catal. Sci. Technol. 2021, 11, 5349–5359.  doi: 10.1039/D1CY00641J

    42. [42]

      Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; Peng, B.; Wang, Z. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671.  doi: 10.1016/j.nanoen.2020.105671

    43. [43]

      Chen, L.; Zhu, D.; Li, J.; Wang, X.; Zhu, J.; Francis, P. S.; Zheng, Y. Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. Appl. Catal., B: Environ. 2020, 273, 119050.  doi: 10.1016/j.apcatb.2020.119050

    44. [44]

      Liu, Z.; Zhang, X.; Jiang, Z.; Chen, H. S.; Yang, P. Phosphorus and sulphur co-doping of g-C3N4 nanotubes with tunable architectures for superior photocatalytic H2 evolution. Int. J. Hydrogen Energy 2019, 44, 20042–20055.  doi: 10.1016/j.ijhydene.2019.06.037

    45. [45]

      Lv, H.; Huang, Y.; Koodali, R. T.; Liu, G.; Zeng, Y.; Meng, Q.; Yuan, M. Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 12656–12667.  doi: 10.1021/acsami.9b19057

    46. [46]

      Wang, H.; Bian, Y.; Hu, J.; Dai, L. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Appl. Catal., B: Environ. 2018, 238, 592–598.  doi: 10.1016/j.apcatb.2018.07.023

    47. [47]

      Wang, H.; Qiu, X.; Peng, Z.; Wang, W.; Wang, J.; Zhang, T.; Jiang, L.; Liu, H. Cobalt-gluconate-derived high-density cobalt sulfides nanocrystals encapsulated within nitrogen and sulfur dual-doped micro/mesoporous carbon spheres for efficient electrocatalysis of oxygen reduction. J. Colloid Interface Sci. 2020, 561, 829–837.  doi: 10.1016/j.jcis.2019.11.065

    48. [48]

      Liu, R.; Tan, K.; Gong, Y.; Chen, Y.; Li, Z.; Xie, S.; He, T.; Lu, Z.; Yang, H.; Jiang, D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242.  doi: 10.1039/D0CS00620C

    49. [49]

      Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J. P.; Shen Wee, A. T.; Jiang, J. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.  doi: 10.1016/j.carbon.2018.01.008

    50. [50]

      He, X.; Bai, S.; Jiang, J.; Ong, W. J.; Peng, J.; Xiong, Z.; Liao, G.; Zou, J.; Li, N. Oxygen vacancy mediated step-scheme heterojunction of WO2.9/g-C3N4 for efficient electrochemical sensing of 4-nitrophenol. Chemical Engineering Journal Advances 2021, 8, 100175.  doi: 10.1016/j.ceja.2021.100175

    51. [51]

      Zhao, D.; Wang, Y.; Dong, C.; Huang, Y.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.  doi: 10.1038/s41560-021-00795-9

    52. [52]

      Sun, Y.; Jiang, J.; Liu, Y.; Wu, S.; Zou, J. A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones. Appl. Surf. Sci. 2018, 430, 362–370.  doi: 10.1016/j.apsusc.2017.06.157

    53. [53]

      Zou, J.; Mao, D.; Wee, A. T. S.; Jiang, J. Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for l-tyrosine. Appl. Surf. Sci. 2019, 467, 608–618.

    54. [54]

      Zou, J.; Mao, D.; Li, N.; Jiang, J. Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nanoflakes. Appl. Surf. Sci. 2020, 506, 144672.  doi: 10.1016/j.apsusc.2019.144672

    55. [55]

      Song, H.; Liu, X.; Wang, U.; Chen, L.; Zhang, J.; Zhao, C.; He, F.; Dong, P.; Li, B.; Wang, S.; Wang, S.; Sun, H. Synergy of intermolecular donor-acceptor and ultrathin structures in crystalline carbon nitride for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 1603–1612.  doi: 10.1016/j.jcis.2021.09.088

    56. [56]

      Li, X. B.; Liu, J. Y.; Huang, J. T.; He, C. Z.; Feng, Z. J.; Chen, Z.; Wan, L. Y.; Deng, F. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photo-catalyst with enhanced photocatalytic performance. Acta Phys. -Chim. Sin. 2021, 37, 2010030.

    57. [57]

      Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye, L. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 404, 126498.  doi: 10.1016/j.cej.2020.126498

    58. [58]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9–20.  doi: 10.1016/S1872-2067(19)63382-6

    59. [59]

      Ren, D.; Zhang, W.; Ding, Y.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution. Solar RRL 2020, 4, 1900423.  doi: 10.1002/solr.201900423

    60. [60]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.  doi: 10.1002/adma.202100317

    61. [61]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.  doi: 10.1016/j.chempr.2020.06.010

    62. [62]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218–5225.  doi: 10.1002/anie.201916012

    63. [63]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.  doi: 10.1038/s41467-020-18350-7

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    6. [6]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    7. [7]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    11. [11]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    12. [12]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    13. [13]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    14. [14]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    15. [15]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    16. [16]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

Metrics
  • PDF Downloads(5)
  • Abstract views(428)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return