Citation: Ran Chen, Juan Chen, Huinan Che, Gang Zhou, Yanhui Ao, Bin Liu. Atomically Dispersed Main Group Magnesium on Cadmium Sulfide as the Active Site for Promoting Photocatalytic Hydrogen Evolution Catalysis[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220101. doi: 10.14102/j.cnki.0254-5861.2021-0027 shu

Atomically Dispersed Main Group Magnesium on Cadmium Sulfide as the Active Site for Promoting Photocatalytic Hydrogen Evolution Catalysis

  • Corresponding author: Yanhui Ao, andyao@hhu.edu.cn Bin Liu, liubin@ntu.edu.sg
  • Ran Chen and Juan Chen contributed equally to this work.
  • Received Date: 5 November 2021
    Accepted Date: 1 December 2021

Figures(4)

  • Photoabsorption charge separation/transfer and surface reaction are the three main factors influencing the efficiency of photocatalysis. Band structure engineering has been extensively applied to improve the light absorption of photocatalysts, however, most of the developed photocatalysts still suffer from low photocatalytic performance due to the limited active site(s) and fast recombination of photogenerated charge carriers. In this work, atomically dispersed main group magnesium (Mg) is introduced onto CdS monodispersed nanospheres, which greatly enhances the photocatalytic hydrogen evolution reaction. The photocatalytic hydrogen evolution reaction rate reaches 30.6 mmol·gcatalyst-1·h-1, which is about 11.8 and 2.5 times that of pure CdS and Pt (2 wt.%)-CdS. The atomically dispersed Mg on CdS acts as an electron sink to trap photogenerated electrons, and at the same time, greatly reduces the Gibbs free energy of hydrogen evolution reaction (HER) and accelerates HER.
  • 加载中
    1. [1]

      Wang, J. F.; Chen, J.; Wang, P. F.; Hou, J.; Wang, C.; Ao, Y. H. Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl. Catal. B-Environ. 2018, 239, 578–585.  doi: 10.1016/j.apcatb.2018.08.048

    2. [2]

      Lin, H. X.; Chen, C. P.; Zhou, T. H.; Zhang, J. Two-dimensional covalent-organic frameworks for photocatalysis: the critical roles of building block and linkage. Solar RRL 2020, 5, 2000458.

    3. [3]

      Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. N.; Tang, Z. Y.; Liu, Z. Q. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem. Int. Ed. 2020, 9, 11948–11957.

    4. [4]

      Mu, R. H.; Ao, Y. H.; Wu, T. F.; Wang, C.; Wang, P. F. Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods. J. Alloy. Compd. 2020, 812, 151990.  doi: 10.1016/j.jallcom.2019.151990

    5. [5]

      Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2020, 59, 23112–23116.  doi: 10.1002/anie.202011495

    6. [6]

      Wang, J. F.; Wang, P. F.; Wang, C.; Ao, Y. H. In-situ synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution. Int. J. Hydrogen Energ. 2018, 43, 14934–14943.  doi: 10.1016/j.ijhydene.2018.06.101

    7. [7]

      Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem. Int. Ed. 2020, 60, 25546–25550.

    8. [8]

      Liu, X.; Zhao, Y. X.; Yang, X. F.; Liu, Q. Q.; Yu, X. H.; Li, Y. Y.; Tang, H.; Zhang, T. R. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl. Catal. B: Environ. 2020, 275, 119144.  doi: 10.1016/j.apcatb.2020.119144

    9. [9]

      Liu, M. R.; Hong, Q. L.; Li, Q. H.; Du, Y. H.; Zhang, H. X.; Chen, S. M.; Zhou, T. H.; Zhang, J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2018, 28, 1801136.  doi: 10.1002/adfm.201801136

    10. [10]

      Zhou, S. Q.; Wang, Y.; Zhou, K.; Ba, D. Y.; Ao, Y. H.; Wang, P. F. In-situ construction of Z-scheme g-C3N4/WO3 composite with enhanced visible-light responsive performance for nitenpyram degradation. Chin. Chem. Lett. 2021, 32, 2179–2182.  doi: 10.1016/j.cclet.2020.12.002

    11. [11]

      Yang, M. Q.; Han, C.; Xu, Y. J. Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene-CdS-MoS2 composites. J. Phys. Chem. C 2015, 119, 27234–27246.  doi: 10.1021/acs.jpcc.5b08016

    12. [12]

      Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv. Mater. 2018, 1705941.

    13. [13]

      Li, W.; Lee, J. R.; Jackel, F. Simultaneous optimization of colloidal stability and interfacial charge transfer efficiency in photocatalytic Pt/CdS nanocrystals. ACS Appl. Mater. Interfaces 2016, 8, 29434–29441.  doi: 10.1021/acsami.6b09364

    14. [14]

      Wang, J. F.; Wang, P. F.; Hou, J.; Qian, J.; Wang, C.; Ao, Y. H. In situ surface engineering of ultrafine Ni2P nanoparticles on cadmium sulfide for robust hydrogen evolution. Catal. Sci. Technol. 2018, 8, 5406–5415.  doi: 10.1039/C8CY00519B

    15. [15]

      Yin, X. L.; He, G. Y.; Sun, B.; Jiang, W. J.; Xue, D. J.; Xia, A. D.; Wan, L. J.; Hu, J. S. Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation. Nano Energy 2016, 28, 319–329.  doi: 10.1016/j.nanoen.2016.08.037

    16. [16]

      Ma, X. W.; Lin, H. F.; Li, Y. Y.; Wang, L.; Pu, X. P.; Yi, X. J. Dramatically enhanced visible-light-responsive H2 evolution of Cd1-xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7–22.

    17. [17]

      Li, M. X.; Guan, R. Q.; Li, J. X.; Zhao, Z.; Zhang, J. K.; Dong, C. C.; Qi, Y. F.; Zhai, H. J. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437–1443.

    18. [18]

      Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 1–10.  doi: 10.1038/s41467-016-0009-6

    19. [19]

      Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.  doi: 10.1039/C3CS60425J

    20. [20]

      Yao, X. X.; Hu, X. L.; Cui, Y. Y.; Huang, J. L.; Zhang, W. J.; Wang, X. H.; Wang, D. W. Effect of Mie resonance on photocatalytic hydrogen evolution over dye-sensitized hollow C-TiO2 nanoshells under visible light irradiation. Chin. Chem. Lett. 2021, 32, 1135–1138.  doi: 10.1016/j.cclet.2020.08.043

    21. [21]

      Bi, W. T.; Li, X. G.; Zhang, L.; Jin, T.; Zhang, L. D.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 2015, 6, 8647.  doi: 10.1038/ncomms9647

    22. [22]

      Yu, F.; Wang, L. C.; Xing, Q. J.; Wang, D. K.; Jiang, X. H.; Li, G. C.; Zheng, A. M.; Ai, F. R.; Zoua, J. P. Functional groups to modify g-C3N4 for improved photocatalytic activity of hydrogen evolution from water splitting. Chin. Chem. Lett. 2020, 31, 1648–1653.  doi: 10.1016/j.cclet.2019.08.020

    23. [23]

      Zhang, H. B.; Wang, Y.; Zuo, S. W.; Zhou, W.; Zhang, J.; Lou, X. W. D. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 2021, 143, 2173–2177.  doi: 10.1021/jacs.0c08409

    24. [24]

      Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.  doi: 10.1038/ncomms13638

    25. [25]

      Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.  doi: 10.1021/acs.chemrev.7b00776

    26. [26]

      Lai, W. H.; Miao, Z. C.; Wang, Y. X.; Wang, J. Z.; Chou, S. L. Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity. Adv. Energy Mater. 2019, 9, 1900722.  doi: 10.1002/aenm.201900722

    27. [27]

      Ding, S. P.; Hulsey, M. J.; Perez-Ramirez, J.; Yang, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.  doi: 10.1016/j.joule.2019.09.015

    28. [28]

      Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.  doi: 10.1021/acs.chemrev.7b00776

    29. [29]

      Zhu, B. J.; Qiu, K. P.; Shang, C. X.; Guo, Z. X. Naturally derived porous carbon with selective metal-and/or nitrogen-doping for efficient CO2 capture and oxygen reduction. J. Mater. Chem. A 2015, 3, 5212–5222.  doi: 10.1039/C4TA06072E

    30. [30]

      Mahajan, R.; Prakash, R.; Kumar, S.; Kumar, V.; Choudhary, R. J.; Phase, D. M. Surface and luminescent properties of Mg3(PO4)2: Dy3+ phosphors. Optik 2021, 225, 165717.  doi: 10.1016/j.ijleo.2020.165717

    31. [31]

      Du, C. L.; Zhu, Y. Q.; Wang, Z. T.; Wang, L. Q.; Younas, W.; Ma, X. L.; Cao, C. B. Cuprous self-doping regulated mesoporous CuS nanotube cathode materials for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2020, 12, 35035–35042.  doi: 10.1021/acsami.0c09466

    32. [32]

      Yuan, Y. J.; Chen, D. Q.; Yang, S. H.; Yang, L. X.; Wang, J. J.; Cao, D. P.; Tu, W. G.; Yu, Z. T.; Zou, Z. G. Constructing noble-metal-free Z-scheme photocatalytic overall water splitting systems using MoS2 nanosheets modified CdS as a H2 evolution photocatalyst. J. Mater. Chem. A 2013, 5, 21205–21213.

    33. [33]

      Kumar, D. P.; Hong, S.; Reddy, D. A.; Kim, T. K. Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Appl. Catal. B-Environ. 2017, 212, 7–14.  doi: 10.1016/j.apcatb.2017.04.065

    34. [34]

      Ildefonse, P.; Calas, G.; Flank, A. M.; Lagarde, P. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 1995, 97, 172–175.  doi: 10.1016/0168-583X(94)00710-1

    35. [35]

      Yoshimura, T.; Tamenori, Y.; Iwasaki, N.; Hasegawa, H.; Suzuki, A.; Kawahata, H. Magnesium K-edge XANES spectroscopy of geological standards. J. Synchrotron Radiat. 2013, 20, 734–740.  doi: 10.1107/S0909049513016099

    36. [36]

      Li, S.; Zhang, L. J.; Jiang, T. F.; Chen, L. P.; Lin, Y. H.; Wang, D. J.; Xie, T. F. Construction of shallow surface states through light Ni doping for high-efficiency photocatalytic hydrogen production of CdS nanocrystals. Chem. Eur. J. 2014, 20, 311–316.  doi: 10.1002/chem.201302679

    37. [37]

      Huang, Q. Z.; Tao, Z. J.; Ye, L. Q.; Yao, H. C.; Li, Z. J. Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl. Catal. B-Environ. 2018, 237, 689–698.  doi: 10.1016/j.apcatb.2018.06.040

    38. [38]

      Zhou, G.; Hu, Y. Y.; Long, L. Y.; Wang, P. F.; Shan, Y.; Wang, L. L.; Guo, J. H.; Zhang, C. G.; Zhang, Y. M.; Liu, L. Z. Charged excited state induced by ultrathin nanotip drives highly efficient hydrogen evolution. Appl. Catal. B-Environ. 2020, 262, 118305.  doi: 10.1016/j.apcatb.2019.118305

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    3. [3]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    4. [4]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    5. [5]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    6. [6]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    7. [7]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    8. [8]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    9. [9]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    10. [10]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    11. [11]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    12. [12]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    18. [18]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    19. [19]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    20. [20]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

Metrics
  • PDF Downloads(10)
  • Abstract views(500)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return