Citation: Hong-Lin LU, Jin TONG, Hong-Wei MA, Shu-Yan YU. Iodine Adsorption Studies of Dipalladium-based Supramolecular Cages[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1680-1686. doi: 10.14102/j.cnki.0254-5861.2011-3271 shu

Iodine Adsorption Studies of Dipalladium-based Supramolecular Cages

  • Corresponding author: Hong-Wei MA, hwma@bit.edu.cn Shu-Yan YU, selfassembly@bjut.edu.cn
  • Received Date: 29 May 2021
    Accepted Date: 12 October 2021

    Fund Project: the Beijing Natural Science Foundation of China 2212002National Natural Science Foundation of China 21906002National Natural Science Foundation of China 21471011the Beijing Municipal Science and Technology Project KM202010005010the Beijing Municipal High Level Innovative Team Building Program IDHT20180504the Beijing Outstanding Young Scientist Program BJJWZYJH01201910005017

Figures(5)

  • Four water-soluble cage-like hosts (1·4NO3-: {[(bpy)2Pd2]2L21}(NO3)4, 2·4NO3-: {[(bpy)2Pd2]2L22}(NO3)4, 3·6NO3-: {[(bpy)2Pd2]3L23}(NO3)6 and 4·6NO3-: {[(bpy)2Pd2]3L24}(NO3)6) have been successfully self-assembled by coordinating the flexible amide based polypyrazole ligands (H2L1: N1, N4-di(1H-pyrazol-5-yl)terephthalamide, H2L2: N1, N4-bis(3-methyl-1H-pyrazol-5-yl)-terephthalamide, H3L3: N1, N3, N5-tri(1H-pyrazol-5-yl)benzene-1, 3, 5-tricarboxamide and H3L4: N1, N3, N5-tris(3-methyl-1H-pyrazol-5-yl)benzene-1, 3, 5-tricarboxamide) with dipalladium corners ([(bpy)2Pd2(NO3)2](NO3)2, where bpy = 2, 2΄-bipyridine) in aqueous solution. Their structures were characterized by 1H NMR, ESI-MS and single-crystal X-ray diffraction. Notably, all the four supramolecular assemblies are capable of adsorbing iodine molecules via halogen bonds and other supramolecular interactions.
  • 加载中
    1. [1]

      Harris, K.; Fujita, D.; Fujita, M. Giant hollow MnL2n spherical complexes: structure, functionalisation and applications. Chem. Commun. 2013, 49, 6703–6712.  doi: 10.1039/c3cc43191f

    2. [2]

      Hong, C. M.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 2018, 51, 2447–2455.  doi: 10.1021/acs.accounts.8b00328

    3. [3]

      Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Selective molecular recognition, C−H bond activation, and catalysis in nanoscale reaction vessels. Acc. Chem. Res. 2005, 38, 349–358.  doi: 10.1021/ar040152p

    4. [4]

      Liu, S.; Han, Y. F.; Jin, G. X. Formation of direct metal-metal bonds from 16-electron "pseudo-aromatic" half-sandwich complexes Cp″M[E2C2(B10H10)]. Chem. Soc. Rev. 2007, 36, 1543–1560.  doi: 10.1039/b701869j

    5. [5]

      Lehn, J. M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.; Moras, D. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 2565–2569.  doi: 10.1073/pnas.84.9.2565

    6. [6]

      Scheer, M. The coordination chemistry of group 15 element ligand complexes - a developing area. Dalton Trans. 2008, 4372–4386.

    7. [7]

      Han, M.; Engelhard, D. M.; Clever, G. H. Self-assembled coordination cages based on banana-shaped ligands. Chem. Soc. Rev. 2014, 43, 1848–1860.  doi: 10.1039/C3CS60473J

    8. [8]

      Takeda, N.; Umemoto, K.; Yamaguchi, K.; Fujita, M. A nanometre-sized hexahedral coordination capsule assembled from 24 components. Nature 1999, 398, 794–796.  doi: 10.1038/19734

    9. [9]

      Hong, M.; Zhao, Y.; Su, W.; Cao, R.; Fujita, M.; Zhou, Z.; Chan, A. S. C. A Nanometer-sized metallosupramolecular cube with Oh symmetry. J. Am. Chem. Soc. 2000, 122, 4819–4820.  doi: 10.1021/ja000247w

    10. [10]

      Newkome, G. R.; He, E.; Moorefield, C. N. Suprasupermolecules with novel properties:   metallodendrimers. Chem. Rev. 1999, 99, 1689–1746.  doi: 10.1021/cr9800659

    11. [11]

      Amoroso, A. J.; Jeffery, J. C.; Jones, P. L.; McCleverty, J. A.; Thornton, P.; Ward, M. D. Self-assembly of a ferromagnetically coupled manganese(II) tetramer. Angew. Chem. Int. Ed. 1995, 34, 1443–1446.  doi: 10.1002/anie.199514431

    12. [12]

      Argent, S. P.; Adams, H.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L. P.; Ward, M. D. High-nuclearity homoleptic and heteroleptic coordination cages based on tetra-capped truncated tetrahedral and cuboctahedral metal frameworks. J. Am. Chem. Soc. 2006, 128, 72–73.  doi: 10.1021/ja056993o

    13. [13]

      Paul, R. L.; Bell, Z. R.; Jeffery, J. C.; Harding, L. P.; McCleverty, J. A.; Ward, M. D. Complexes of a bis-bidentate ligand with d10 ions: a mononuclear complex with Ag(I), and a tetrahedral cage complex with Zn(II) which encapsulates a fluoroborate anion. Polyhedron 2003, 22, 781–787.  doi: 10.1016/S0277-5387(02)01410-9

    14. [14]

      Lehn, J. M. (Nobel Lecture) Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angew. Chem. Int. Ed. 1988, 27, 89–112.  doi: 10.1002/anie.198800891

    15. [15]

      Steed, J. W.; Atwood, J. L. Supramolecular chemistry, 2nd ed. John Wiley & Sons, Ltd. 2009.

    16. [16]

      Lehn, J. M. Supramolecular chemistry: where from? where to? Chem. Soc. Rev. 2017, 46, 2378–2379.  doi: 10.1039/C7CS00115K

    17. [17]

      Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Supramolecular chemistry in water. Angew. Chem. Int. Ed. 2007, 46, 2366–2393.

    18. [18]

      Lin, Y.; Jiang, X.; Kim, S. T.; Alahakoon, S. B.; Hou, X.; Zhang, Z.; Thompson, C. M.; Smaldone, R. A.; Ke, C. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J. Am. Chem. Soc. 2017, 139, 7172–7175.  doi: 10.1021/jacs.7b03204

    19. [19]

      Riley, B. J.; Vienna, J. D.; Strachan, D. M.; McCloy, J. S.; Jerden, J. L. Materials and processes for the effective capture and immobilization of radioiodine: a review. J. Nucl. Mater. 2016, 470, 307–326.

    20. [20]

      Garcia, M. D.; Marti-Rujas, J.; Metrangolo, P.; Peinador, C.; Pilati, T.; Resnati, G.; Terraneo, G.; Ursini, M. Dimensional caging of polyiodides: cation-templated synthesis using bipyridinium salts. CrystEngComm. 2011, 13, 4411–4416.  doi: 10.1039/c0ce00860e

    21. [21]

      Svensson, P. H.; Gorlov, M.; Kloo, L. Dimensional caging of polyiodides. Inorg. Chem. 2008, 47, 11464–11466.  doi: 10.1021/ic801820s

    22. [22]

      Blake, A. J.; Devillanova, F. A.; Gould, R. O.; Li, W. S.; Lippolis, V.; Parsons, S.; Radek, C.; Schroder, M. Template self-assembly of polyiodide networks. Chem. Soc. Rev. 1998, 27, 195–206.  doi: 10.1039/a827195z

    23. [23]

      Kosaka, K.; Asami, M.; Kobashigawa, N.; Ohkubo, K.; Terada, H.; Kishida, N.; Akiba, M. Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake. Water Res. 2012, 46, 4397–4404.  doi: 10.1016/j.watres.2012.05.055

    24. [24]

      Yu, S. Y.; Huang, H.; Liu, H. B.; Chen, Z. N.; Zhang, R.; Fujita, M. Modular cavity-tunable self-assembly of molecular bowls and crowns as structural analogues of calix[3]arenes. Angew. Chem. Int. Ed. 2003, 42, 686–690.  doi: 10.1002/anie.200390190

    25. [25]

      Xie, T. Z.; Guo, C.; Yu, S. Y.; Pan, Y. J. Fine-tuning conformational motion of a self-assembled metal-organic macrocycle by multiple C–H···anion hydrogen bonds. Angew. Chem. Int. Ed. 2012, 51, 1177–1181.

    26. [26]

      Jiang, X. F.; Hau, F. K. W.; Sun, Q. F.; Yu, S. Y.; Yam, V. W. W. From {AuI···AuI}-coupled cages to the cage-built 2-D {AuI ···AuI} arrays: AuI···AuI bonding interaction driven self-assembly and their AgI sensing and photo-switchable behavior. J. Am. Chem. Soc. 2014, 136, 10921–10929.

    27. [27]

      Jiang, X. F.; Huang, H.; Chai, Y. F.; Lohr, T. L.; Yu, S. Y.; Lai, W.; Pan, Y. J.; Delferro, M.; Marks, T. J. Hydrolytic cleavage of both CS2 carbon-sulfur bonds by multinuclear Pd(II) complexes at room temperature. Nat. Chem. 2017, 9, 188–193.

    28. [28]

      Deng, W.; Yu, Z. S.; Ma, H. W.; Yu, S. Y. Self-assembly of water-soluble platinum(II)-based metallacalixarenes and tuning their conformational interconversion via synergistic effects between solvents and anions. Chem. Asian J. 2018, 13, 2805–2811.

    29. [29]

      Lu, H. L.; Tong, J.; Hu, X. P.; Deng, W.; Yu, S. Y. Dipalladium(Ⅱ, Ⅱ)-assembled molecular capsules that unsymmetrically encapsulate a nitrate via hydrogen bonding. Inorg. Chem. Commun. DOI: 10.1016/j.inoche.2021.108672.

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    3. [3]

      Huipeng LiXue YangMinjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651

    4. [4]

      Yujuan ZhouKecheng Jie . Conformationally adaptive metal–organic cages for dynamic guest encapsulation. Chinese Chemical Letters, 2025, 36(6): 111007-. doi: 10.1016/j.cclet.2025.111007

    5. [5]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    6. [6]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    7. [7]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    8. [8]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    9. [9]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    10. [10]

      Zeyuan ZhangZixuan LiChenjing LiuYali HouKe GaoShijin JianGuoping LiGang HeMingming Zhang . Porphyrin metallacage-based host-guest complexation for highly efficient photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111322-. doi: 10.1016/j.cclet.2025.111322

    11. [11]

      Fadeng YangPengli ZhangJianbo LiuChuan WanJinming SunChuan DaiZhihong LiuYuhao AnYujie WuYun XingFeng YinYuxin YeWei HanZigang Li . Self-assembly of a cyclo-pentapeptide with a novel frame structure. Chinese Chemical Letters, 2025, 36(9): 110785-. doi: 10.1016/j.cclet.2024.110785

    12. [12]

      Ran ZhuPan ZhangYitong XuJiutong MaQiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259

    13. [13]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    14. [14]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    15. [15]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    16. [16]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    17. [17]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    18. [18]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    19. [19]

      Ming-Ming GanZi-En ZhangXin LiF. Ekkehardt HahnYing-Feng Han . Hierarchical self-assembly of fluorinated poly-N-heterocyclic carbene pillarplexes with anions. Chinese Chemical Letters, 2025, 36(10): 110624-. doi: 10.1016/j.cclet.2024.110624

    20. [20]

      Ying ZhaoYao HeJian-Xin YangWen-Jie LiuDan TianFrancisco AznarezLe-Le GongLi-Long DangLu-Fang Ma . Controllable self-assembly and photothermal conversion of metalla[2]catenanes induced by synergistic effect of free radicals and stacking interactions. Chinese Chemical Letters, 2025, 36(12): 111460-. doi: 10.1016/j.cclet.2025.111460

Metrics
  • PDF Downloads(1)
  • Abstract views(1018)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return