Citation: Wei-Feng YOU, Xiao XU, Ai-Hui CAO, Zhi-Jie TAO, Long-Tian KANG. Synthesis of Axially Coordinated Cobalt Porphyrin/graphene Oxide Nanocomposite for Enhanced Electrocatalytic CO2 Reduction to CO[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 2203001-2203011. doi: 10.14102/j.cnki.0254-5861.2011-3247 shu

Synthesis of Axially Coordinated Cobalt Porphyrin/graphene Oxide Nanocomposite for Enhanced Electrocatalytic CO2 Reduction to CO

  • Corresponding author: Long-Tian KANG, longtiank@fjirsm.ac.cn
  • Received Date: 7 May 2021
    Accepted Date: 15 May 2021

    Fund Project: the National Natural Science Foundation of China 21705150the National Natural Science Foundation of China 21473204Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China 2021ZR124

Figures(6)

  • The electrocatalysts containing cobalt-pyrrolic nitrogen-carbon (Co-N4-C) moiety for CO2 reduction reaction (CO2RR) have caught much attention. However, the effects of Co valence state and its synergy with graphene substrate are not clear yet. In this work, cobalt porphyrin (CoTPP) molecule with the intrinsic Co-N4-C moiety is successfully combined with graphene oxide (GO) via three kinds of liquid-phase methods. The ratio of CoTPP to GO and the valence state of Co atom are studied to explore their catalysis for CO2RR to CO. It is found that axially-coordinated Co(Ⅲ)TPPCl/GO nanocomposites synthesized via a chemical method exhibit better ability for CO2RR, as compared with Co(Ⅱ)TPP+GO and/or Co(Ⅲ)TPPCl+GO nanocomposites obtained via a physically mixing way. After optimizing the ratio of CoTPP to GO, the Faradaic efficiency (FE) is more than 90% for CO2RR to CO between −0.7 and −0.8 V vs. reversible hydrogen electrode (RHE) in Co(Ⅲ)TPPCl/GO75. The synergy between CoTPP and GO and the effect of Co valence state are systematically investigated, indicating that their strong interaction plays the key role in electrocatalytic CO2RR.
  • 加载中
    1. [1]

      Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 2018, 1, 244–254.  doi: 10.1038/s41929-018-0051-3

    2. [2]

      McNeil, B. I.; Sasse, T. P. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 2016, 529, 383–386.  doi: 10.1038/nature16156

    3. [3]

      Zhang, Y.; Jiao, L.; Yang, W.; Xie, C.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 7607–7611.  doi: 10.1002/anie.202016219

    4. [4]

      Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 2705–2709.  doi: 10.1002/anie.201914977

    5. [5]

      Yuan, W.; Wang, S.; Ma, Y.; Qiu, Y.; An, Y.; Cheng, L. Interfacial engineering of cobalt nitrides and mesoporous nitrogen-doped carbon: toward efficient overall water-splitting activity with enhanced charge-transfer efficiency. Acs Energy Lett. 2020, 5, 692–700.  doi: 10.1021/acsenergylett.0c00116

    6. [6]

      Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.  doi: 10.1021/acs.accounts.8b00010

    7. [7]

      Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301–307.  doi: 10.1038/s41563-018-0033-5

    8. [8]

      Varela, A. S.; Ju, W.; Strasser, P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8.

    9. [9]

      Peng, Y.; Lu, B.; Chen, S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, e1801995.  doi: 10.1002/adma.201801995

    10. [10]

      Fu, J.; Zhu, W.; Chen, Y.; Yin, Z.; Li, Y.; Liu, J.; Zhang, H.; Zhu, J. J.; Sun, S. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem. Int. Ed. 2019, 58, 14100–14103.  doi: 10.1002/anie.201905318

    11. [11]

      Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.  doi: 10.1021/jacs.9b04907

    12. [12]

      Li, C.; Tong, X.; Yu, P.; Du, W.; Wu, J.; Rao, H.; Wang, Z. M. Carbon dioxide photo/electroreduction with cobalt. J. Mater. Chem. A 2019, 7, 16622–16642.  doi: 10.1039/C9TA03892B

    13. [13]

      Jiao, L.; Yang, W.; Wan, G.; Zhang, R.; Zheng, X.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 2020, 59, 20589–20595.  doi: 10.1002/anie.202008787

    14. [14]

      Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; Fan, J.; Zhong, J.; Wu, T.; Miller, D. J.; Lu, J.; Lee, S. T.; Li, Y. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem. 2017, 3, 652–664.  doi: 10.1016/j.chempr.2017.08.002

    15. [15]

      Yang, D.; Zuo, S.; Yang, H.; Zhou, Y.; Wang, X. Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem. Int. Ed. 2020, 59, 18954–18959.  doi: 10.1002/anie.202006899

    16. [16]

      Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 1–19.

    17. [17]

      Ma, D. D.; Han, S. G.; Cao, C.; Li, X.; Wu, X. T.; Zhu, Q. L. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine. Appl. Catal. B Environ. 2020, 264.

    18. [18]

      Liu, J.; Shi, H.; Shen, Q.; Guo, C.; Zhao, G. A biomimetic photoelectrocatalyst of Co-porphyrin combined with a g-C3N4 nanosheet based on π-π supramolecular interaction for high-efficiency CO2 reduction in water medium. Green Chem. 2017, 19, 5900–5910.  doi: 10.1039/C7GC02657A

    19. [19]

      Hou, Y.; Huang, Y. B.; Liang, Y. L.; Chai, G. L.; Yi, J. D.; Zhang, T.; Zang, K. T.; Luo, J.; Xu, R.; Lin, H.; Zhang, S. Y.; Wang, H. M.; Cao, R. Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2. CCS Chem. 2019, 1, 384–395.  doi: 10.31635/ccschem.019.20190011

    20. [20]

      Wang, J.; Huang, X.; Xi, S.; Lee, J. M.; Wang, C.; Du, Y.; Wang, X. Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2019, 58, 13532–13539.  doi: 10.1002/anie.201906475

    21. [21]

      Yang, F.; Ma, X.; Cai, W. B.; Song, P.; Xu, W. Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 20451–20459.  doi: 10.1021/jacs.9b11123

    22. [22]

      Zhang, M. D.; Si, D. H.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020, 20054254.

    23. [23]

      Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.  doi: 10.1126/science.aac8343

    24. [24]

      Sonkar, P. K.; Prakash, K.; Yadav, M.; Ganesan, V.; Sankar, M.; Gupta, R.; Yadav, D. K. Co(Ⅱ)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement. J. Mater. Chem. A 2017, 5, 6263–6276.  doi: 10.1039/C6TA10482G

    25. [25]

      He, C.; Zhang, Y.; Zhang, Y.; Zhao, L.; Yuan, L. P.; Zhang, J.; Ma, J.; Hu, J. S. Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen. Angew. Chem. Int. Ed. 2020, 59, 4914–4919.  doi: 10.1002/anie.201916520

    26. [26]

      Kramer, W. W.; McCrory, C. C. L. Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 2016, 7, 2506–2515.  doi: 10.1039/C5SC04015A

    27. [27]

      Choi, J.; Kim, J.; Wagner, P.; Gambhir, S.; Jalili, R.; Byun, S.; Sayyar, S.; Lee, Y. M.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 2019, 12, 747–755.  doi: 10.1039/C8EE03403F

    28. [28]

      Hu, X. M.; Ronne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 2017, 56, 6468–6472.  doi: 10.1002/anie.201701104

    29. [29]

      Wang, D. H.; Pan, J. N.; Li, H. H.; Liu, J. J.; Wang, Y. B.; Kang, L. T.; Yao, J. N. A pure organic heterostructure of μ-oxo dimeric iron(Ⅲ) porphyrin and graphitic-C3N4 for solar H2 roduction from water. J. Mater. Chem. A 2016, 4, 290–296.  doi: 10.1039/C5TA07278F

    30. [30]

      Pan, J.; Kang, L.; Huang, P.; Jia, Z.; Liu, J.; Yao, J. The controllable synthesis of ultrafine one-dimensional small-molecule semiconducting nanocrystals in surfactant-assisted wet chemical reactions and their confinement effect. J. Mater. Chem. C 2017, 5, 6377–6385.  doi: 10.1039/C7TC01391D

    31. [31]

      Kang, L.; Wang, Z.; Cao, Z.; Ma, Y.; Fu, H.; Yao, J. Colloid chemical reaction route to the preparation of nearly monodispersed perylene nanoparticles: size-tunable synthesis and three-dimensional self-organization. J. Am. Chem. Soc. 2007, 129, 7305–7312.  doi: 10.1021/ja068710d

    32. [32]

      Zhong, Z.; Liu, J.; Xu, X.; Cao, A.; Tao, Z.; You, W.; Kang, L. Synthesis of Z-scheme cobalt porphyrin/nitrogen-doped graphene quantum dot heterojunctions for efficient molecule-based photocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 2404–2413.  doi: 10.1039/D0TA10196F

    33. [33]

      Xu, X.; Zhou, Y.; Yuan, T.; Li, Y. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea. Electrochim. Acta 2013, 112, 587–595.  doi: 10.1016/j.electacta.2013.09.038

    34. [34]

      Guo, J.; Yan, X.; Liu, Q.; Li, Q.; Xu, X.; Kang, L.; Cao, Z.; Chai, G.; Chen, J.; Wang, Y.; Yao, J. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347–355.  doi: 10.1016/j.nanoen.2018.02.026

    35. [35]

      Ni, W.; Li, C.; Zang, X.; Xu, M.; Huo, S.; Liu, M.; Yang, Z.; Yan, Y. M. Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: an insight into the role of multivalent Cu in selectivity and durability. Appl. Catal. B Environ. 2019, 259.

    36. [36]

      Wu, Q.; Mao, M. J.; Wu, Q. J.; Liang, J.; Huang, Y. B.; Cao, R. Construction of donor-acceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction. Small 2020, 2004933.

    37. [37]

      Stevens, E. D. Electronic structure of metalloporphyrins. 1. Experimental electron density distribution of (meso-tetraphenylporphinato)cobalt(Ⅱ). J. Am. Chem. Soc. 1981, 103, 5087–5095.  doi: 10.1021/ja00407a023

    38. [38]

      Iimura, Y.; Sakurai, T.; Yamamoto, K. The crystal and molecular structure of aquachloro (mesotetraphenylporphyrinato)cobalt(Ⅲ). Bull. Chem. Soc. Jpn. 1988, 61, 821–826.  doi: 10.1246/bcsj.61.821

    39. [39]

      Wang, J.; Huang, X.; Xi, S.; Xu, H.; Wang, X. Axial modification of cobalt complexes on heterogeneous surface with enhanced electron transfer for carbon dioxide reduction. Angew. Chem. Int. Ed. 2020, 59, 19162–19167.  doi: 10.1002/anie.202008759

    40. [40]

      Zhang, Z.; Xiao, J.; Chen, X. J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S.; Meng, X.; Wang, Y.; Tian, Z. Q.; Deng, D. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2018, 57, 16339–16342.  doi: 10.1002/anie.201808593

    41. [41]

      Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 2018, 3, 1381–1386.  doi: 10.1021/acsenergylett.8b00519

    42. [42]

      Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Xu, H.; Li, X.; Yu, X.; Zhang, Z.; Liang, Y.; Wang, H. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.  doi: 10.1038/ncomms14675

    43. [43]

      Jiang, Z.; Wang, Y.; Zhang, X.; Zheng, H.; Wang, X.; Liang, Y. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano. Res. 2019, 12, 2330–2334.  doi: 10.1007/s12274-019-2455-z

    44. [44]

      Lee, J.; Tallarida, N.; Chen, X.; Liu, P.; Jensen, L.; Apkarian, V. A. Tip-enhanced raman spectromicroscopy of Co(Ⅱ)-tetraphenylporphyrin on Au(111): toward the chemists' microscope. ACS Nano. 2017, 11, 11466–11474.  doi: 10.1021/acsnano.7b06183

    45. [45]

      Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 2017, 139, 17109–17113.  doi: 10.1021/jacs.7b08345

    46. [46]

      Choi, J.; Wagner, P.; Gambhir, S.; Jalili, R.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 2019, 4, 666–672  doi: 10.1021/acsenergylett.8b02355

    47. [47]

      Zhu, M.; Chen, J.; Guo, R.; Xu, J.; Fang, X.; Han, Y. F. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B Environ. 2019, 251, 112–118.  doi: 10.1016/j.apcatb.2019.03.047

    48. [48]

      Sun, J.; Yin, H.; Liu, P.; Wang, Y.; Yao, X.; Tang, Z.; Zhao, H. Molecular engineering of Ni-/Co-porphyrin multilayers on reduced graphene oxide sheets as bifunctional catalysts for oxygen evolution and oxygen reduction reactions. Chem. Sci. 2016, 7, 5640–5646.  doi: 10.1039/C6SC02083F

    49. [49]

      Liu, J.; Fan, Y. Z.; Li, X.; Wei, Z.; Xu, Y. W.; Zhang, L.; Su, C. Y. A porous rhodium(Ⅲ)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Appl. Catal. B Environ. 2018, 231, 173–181.  doi: 10.1016/j.apcatb.2018.02.055

    50. [50]

      Zheng, X.; Jia, G.; Fan, G.; Luo, W.; Li, Z.; Zou, Z. Modulation of disordered coordination degree based on surface defective metal-organic framework derivatives toward boosting oxygen evolution electrocatalysis. Small 2020, 16, e2003630.  doi: 10.1002/smll.202003630

    51. [51]

      Leng, M.; Huang, X.; Xiao, W.; Ding, J.; Liu, B.; Du, Y.; Xue, J. Enhanced oxygen evolution reaction by Co–O–C bonds in rationally designed Co3O4/graphene nanocomposites. Nano Energy 2017, 33, 445–452.  doi: 10.1016/j.nanoen.2017.01.061

    52. [52]

      Ma, J.; Liu, L.; Chen, Q.; Yang, M.; Wang, D.; Tong, Z.; Chen, Z. A facile approach to prepare crumpled CoTMPyP/electrochemically reduced graphene oxide nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2017, 399, 535–541.  doi: 10.1016/j.apsusc.2016.12.070

    53. [53]

      Sinha, S.; Zhang, R.; Warren, J. J. Low overpotential CO2 activation by a graphite-adsorbed cobalt porphyrin. ACS Catal. 2020, 10, 12284–12291.  doi: 10.1021/acscatal.0c01367

    54. [54]

      Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W.; Liu, L.; Gao, J.; Li, X.; Ren, X.; Kuang, Z.; Huang, Y.; Zhang, T.; Liu, B. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 2020, 59, 798–803.  doi: 10.1002/anie.201911995

    55. [55]

      Xu, D.; Cheng, B.; Wang, W.; Jiang, C.; Yu, J. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 2018, 231, 368–380.  doi: 10.1016/j.apcatb.2018.03.036

    56. [56]

      Pan, Y.; Qian, Y.; Zheng, X.; Chu, S. Q.; Yang, Y.; Ding, C.; Wang, X.; Yu, S. H.; Jiang, H. L. Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. Natl. Sci. Rev. 2021, 8.

    57. [57]

      Li, X.; Chai, G.; Xu, X.; Liu, J.; Zhong, Z.; Cao, A.; Tao, Z.; You, W.; Kang, L. Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites. Carbon 2020, 167, 658–667.  doi: 10.1016/j.carbon.2020.06.036

    58. [58]

      Xiong, W.; Li, H.; You, H.; Cao, M.; Cao, R. Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. Natl. Sci. Rev. 2020, 7, 609–619.  doi: 10.1093/nsr/nwz166

    59. [59]

      Yi, J. D.; Xie, R.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: stabilizing key intermediates with hydrogen bonding. Angew. Chem. Int. Ed. 2020, 59, 23641–23648.  doi: 10.1002/anie.202010601

  • 加载中
    1. [1]

      Hong-Hui TANXiao-Long LVJiang-Long LIUYu-Fang CHENGQing-Lin ZHOUYi-Ting LINWei MENG . A 2D Layer Copper(Ⅱ) Coordination Polymer with 3-Nitrophthalic Acid: Synthesis, Crystal Structure and Copper 3-Nitrophthalate Metal-organic Framework-graphene Oxide Nanocomposite. Chinese Journal of Structural Chemistry, 2021, 40(4): 459-464. doi: 10.14102/j.cnki.0254-5861.2011-2970

    2. [2]

      JIN Hui-DongGU Yin-DongLIAN Yue-BinXUE Song-LinFANG Yuan-YuanDENG ZhaoSakamoto MasanoriTeranishi ToshiharuPENG Yang . Disulfide-Bridged Dimeric Cobalt Porphyrin: Synthesis and Electroreduction of Dioxygen. Chinese Journal of Inorganic Chemistry, 2020, 36(12): 2377-2384. doi: 10.11862/CJIC.2020.237

    3. [3]

      LI Yun-TaoQIU ShuoDU TengWei WEIHAN Zhen-BingRUAN Fang-YiCAO Li-Hui . Decoration of Graphene Oxide Sheets with Luminescent Heteronuclear Rare-Earth Complexes. Chinese Journal of Inorganic Chemistry, 2019, 35(1): 174-182. doi: 10.11862/CJIC.2019.016

    4. [4]

      Ling-Hang WANGZhi-Hua QIULi-Sheng CHI . Graphene Oxide/Fe3O4 Magnetic Nanocomposites for Efficient Recovery of Indium. Chinese Journal of Structural Chemistry, 2021, 40(11): 1423-1432. doi: 10.14102/j.cnki.0254–5861.2011–3161

    5. [5]

      Ji-Dong MAYun-Miao WUChun-Hai JIANGHou-An ZHANGJun-Qiu ZHU . Microstructural Exploration of the High Capacitance in RuO2-ZrO2 Coating. Chinese Journal of Structural Chemistry, 2021, 40(1): 125-135. doi: 10.14102/j.cnki.0254–5861.2011–2781

    6. [6]

      MEI Qiu-FengZHANG Fei-YanWANG NingLU Wen-ShengSU Xin-TaiWANG WeiWU Rong-Lan . Photocatalysts: Z-Scheme Heterojunction Constructed with Titanium Dioxide. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1321-1339. doi: 10.11862/CJIC.2019.167

    7. [7]

      CHEN ChuanXU YingdiXUE XumingZHOU Pengpeng . Selective Oxidation of Alcohols to Carbonyl Compounds over Metalloporphyrins with MgAl Hydrotalcite Additive. Chinese Journal of Applied Chemistry, 2019, 36(11): 1286-1293. doi: 10.11944/j.issn.1000-0518.2019.11.190073

    8. [8]

      Guo Dong ZHENG Yu Wen LIU Qing Da AN Xi Zhang CAO . ELECTROCARBOXYLATION OF ORGANIC COMPOUNDS WITH CARBON DIOXIDE CATALYZED BY METALLOPORPHYRINS(Ⅲ)--EFFECTS OF AXIAL LIGANDS ON CATALYTIC ACTIVITY OF CoTPP. Chinese Chemical Letters, 1992, 3(5): 355-356.

    9. [9]

      Wang DehongZhang LongLuo Sanzhong . Photo-induced Catalytic Asymmetric Free Radical Reactions. Acta Chimica Sinica, 2017, 75(1): 22-33. doi: 10.6023/A16080418

    10. [10]

      XU KeruiZHONG ZhimingXU HuidongWANG XuanZHAO MinWU Chuande . Highly Efficient Aerobic Oxidation of Arylalkanes with a Biomimetic Catalyst Platform. Chinese Journal of Applied Chemistry, 2017, 34(9): 1079-1085. doi: 10.11944/j.issn.1000-0518.2017.09.170191

    11. [11]

      Wang LemingWang QianChen JieanHuang Yong . Switching Reaction Pathways by Cooperative Catalysis of N-Heterocyclic Carbene and Lewis Acids. Acta Chimica Sinica, 2018, 76(11): 850-856. doi: 10.6023/A18060244

    12. [12]

      DOU Bao-juanZHAO Chen-chenZHANG QingYAN Ning-naYANG De-yuHAO Qing-lan . Catalytic degradation of toluene over Cu-Mn-Ce-Zr/TiO2 coupled with low temperature plasma. Journal of Fuel Chemistry and Technology, 2019, 47(5): 598-604.

    13. [13]

      Jun HuGang KongYanbin ZhuChunshan Che . Ultrafast room-temperature reduction of graphene oxide by sodium borohydride, sodium molybdate and hydrochloric acid. Chinese Chemical Letters, 2021, 32(1): 543-547. doi: 10.1016/j.cclet.2020.03.045

    14. [14]

      Lotfali SaghatforoushMohammad HasanzadehNasrin Shadjou . Polystyrene-graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine. Chinese Chemical Letters, 2014, 25(4): 655-658. doi: 10.1016/j.cclet.2014.01.014

    15. [15]

      Du WeishiLv YaokangLu HongliangChen ZaihuaWright Dominic S.Zhang Cheng . Surface modification by graphene oxide:An efficient strategy to improve the performance of activated carbon based supercapacitors. Chinese Chemical Letters, 2017, 28(12): 2285-2289. doi: 10.1016/j.cclet.2017.10.031

    16. [16]

      Lin Jing MU Jie Sheng HUANG Yong Qia ZHOU Pan Wen SHEN . A NEW KIND OF MANGANESE (Ⅱ) PORPHYRIN COMPLEX TERT-BUTYLAMINE AS AXIAL LIGAND. Chinese Chemical Letters, 1995, 6(5): 379-382.

    17. [17]

      Nga-Chun NgMian HR MahmoodHai-Yang LiuFei YamLam-Lung YeungChi-K. Chang . Appended corrole manganese complexes:Catalysis and axial-ligand effect. Chinese Chemical Letters, 2014, 25(4): 571-574. doi: 10.1016/j.cclet.2014.01.027

    18. [18]

      Tjandra Angie DavinaHuang Jun . Photocatalytic carbon dioxide reduction by photocatalyst innovation. Chinese Chemical Letters, 2018, 29(6): 734-746. doi: 10.1016/j.cclet.2018.03.017

    19. [19]

      Yuxin ChenLijun WangZhibo YaoLeiduan HaoXinyi TanJustus MasaAlex W. RobertsonZhenyu Sun . Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction. Acta Physico-Chimica Sinica, 2022, 38(11): 2207024-0. doi: 10.3866/PKU.WHXB202207024

    20. [20]

      . Novel Ag2S nanoparticles on reduced graphene oxide sheets as a super-efficient catalyst for the reduction of 4-nitrophenol. Chinese Chemical Letters, 2017, 28(2): 417-421. doi: 10.1016/j.cclet.2016.10.019

Metrics
  • PDF Downloads(2)
  • Abstract views(73)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return