Citation: Pei WANG, Chun-Hua HUANG, Xu-Lin CHEN, Can-Zhong LU. A Tetranuclear Cuprous Halide Cluster Exhibiting Efficient Blue Thermally Activated Delayed Fluorescence[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1489-1495. doi: 10.14102/j.cnki.0254-5861.2011-3197 shu

A Tetranuclear Cuprous Halide Cluster Exhibiting Efficient Blue Thermally Activated Delayed Fluorescence

  • Corresponding author: Can-Zhong LU, czlu@fjirsm.ac.cn
  • Received Date: 26 March 2021
    Accepted Date: 13 May 2021

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the Key Research Program of Frontier Science, CAS QYZDJ-SSW-SLH033the National Natural Science Foundation of China 52073286the National Natural Science Foundation of China 21805281the National Natural Science Foundation of China 21875252the Natural Science Foundation of Fujian Province 2006L2005the Natural Science Foundation of Fujian Province 2019J01125the Youth Innovation Foundation of Xiamen City 3502Z20206082the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China 2021ZR132

Figures(6)

  • A new tetranuclear cuprous halide complex, (CuBr)4(PN)2 (PN = 2-(diphenylphosphaneyl)-6-methoxypyridine), was synthesized and fully characterized. In solid state, this complex exhibits efficient blue emission with a photoluminescence quantum yield of 43.3% and a decay time of 19 μs at room temperature. The theoretical calculations, combined with the temperature dependence of spectroscopic properties and emission decay behaviors, indicate that the emission in the solid state originates from the 1, 3(MLCT + XLCT) excited states, which are in thermal equilibrium with a small energy gap of about 0.1 eV.
  • 加载中
    1. [1]

      Mahoro, G. U.; Fernandez-Cestau, J.; Renaud, J. L.; Coto, P. B.; Costa, R. D.; Gaillard, S. Recent advances in solid-state lighting devices using transition metal complexes exhibiting thermally activated delayed fluorescent emission mechanism. Adv. Opt. Mater. 2020, 8.

    2. [2]

      Cao, L.; Huang, S.; Liu, W.; Zhao, H.; Xiong, X. G.; Zhang, J. P.; Fu, L. M.; Yan, X. Thermally activated delayed fluorescence from d(10)-metal carbene complexes through intermolecular charge transfer and multicolor emission with a monomer-dimer equilibrium. Chem. Eur. J. 2020, 26, 17222–17229.  doi: 10.1002/chem.202004106

    3. [3]

      Lin, L.; Chen, D. H.; Yu, R.; Chen, X. L.; Zhu, W. J.; Liang, D.; Chang, J. F.; Zhang, Q.; Lu, C. Z. Photo- and electro-luminescence of three tadf binuclear Cu(Ⅰ) complexes with functional tetraimine ligands. J. Mater. Chem. C 2017, 5, 4495–4504.  doi: 10.1039/C7TC00443E

    4. [4]

      Liang, D.; Chen, X. L.; Liao, J. Z.; Hu, J. Y.; Jia, J. H.; Lu, C. Z. Highly efficient cuprous complexes with thermally activated delayed fluorescence for solution-processed organic light-emitting devices. Inorg. Chem. 2016, 55, 7467–7475.  doi: 10.1021/acs.inorgchem.6b00763

    5. [5]

      Yersin, H.; Czerwieniec, R.; Shafikov, M. Z.; Suleymanova, A. F. Tadf material design: photophysical background and case studies focusing on Cu(Ⅰ) and Ag(Ⅰ) complexes. ChemPhysChem. 2017, 18, 3508–3535.  doi: 10.1002/cphc.201700872

    6. [6]

      Chen, X. L.; Yu, R.; Zhang, Q. K.; Zhou, L. J.; Wu, X. Y.; Zhang, Q.; Lu, C. Z. Rational design of strongly blue-emitting cuprous complexes with thermally activated delayed fluorescence and application in solution-processed oleds. Chem. Mater. 2013, 25, 3910–3920.  doi: 10.1021/cm4024309

    7. [7]

      Chen, X. L.; Yu, R.; Wu, X. Y.; Liang, D.; Jia, J. H.; Lu, C. Z. A strongly greenish-blue-emitting Cu4Cl4 cluster with an efficient spin-orbit coupling (soc): fast phosphorescence versus thermally activated delayed fluorescence. Chem. Commun. 2016, 52, 6288–6291.  doi: 10.1039/C6CC00809G

    8. [8]

      Egly, J.; Bissessar, D.; Achard, T.; Heinrich, B.; Steffanut, P.; Mauro, M.; Bellemin-Laponnaz, S. Copper(Ⅰ) complexes with remotely functionalized phosphine ligands: synthesis, structural variety, photophysics and effect onto the optical properties. Inorg. Chim. Acta 2021, 514.

    9. [9]

      Sun, C.; Guo, Y. H.; Han, S. S.; Li, J. Z.; Jiang, K.; Dong, L. F.; Liu, Q. L.; Yue, C. Y.; Lei, X. W. Three-dimensional cuprous lead bromide framework with highly efficient and stable blue photoluminescence emission. Angew. Chem., Int. Ed. 2020, 59, 16465–16469.  doi: 10.1002/anie.202006990

    10. [10]

      Calvo, M.; Crespo, O.; Gimeno, M. C.; Laguna, A.; Olivan, M. T.; Polo, V.; Rodriguez, D.; Saez-Rocher, J. M. Tunable from blue to red emissive composites and solids of silver diphosphane systems with higher quantum yields than the diphosphane ligands. Inorg. Chem. 2020, 59, 14447–14456.  doi: 10.1021/acs.inorgchem.0c02238

    11. [11]

      Hofbeck, T.; Monkowius, U.; Yersin, H. Highly efficient luminescence of Cu(Ⅰ) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J. Am. Chem. Soc. 2015, 137, 399–404.  doi: 10.1021/ja5109672

    12. [12]

      Gan, X. M.; Yu, R.; Chen, X. L.; Yang, M.; Lin, L.; Wu, X. Y.; Lu, C. Z. A unique tetranuclear Ag(Ⅰ) complex emitting efficient thermally activated delayed fluorescence with a remarkably short decay time. Dalton Trans. 2018, 47, 5956–5960.  doi: 10.1039/C8DT00837J

    13. [13]

      Frisch, M. J. T.; G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H. C.; M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R. H.; J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. H., J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.; C.; Iyengar, S. S. T. J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R. S., R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A. S. P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT. Gaussian 09, Revision D. 01 2009.

    14. [14]

      Lu, T.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.  doi: 10.1002/jcc.22885

    15. [15]

      Chen, X. L.; Lin, C. S.; Wu, X. Y.; Yu, R.; Teng, T.; Zhang, Q. K.; Zhang, Q.; Yang, W. B.; Lu, C. Z. Highly efficient cuprous complexes with thermally activated delayed fluorescence and simplified solution process oleds using the ligand as host. J. Mater. Chem. C 2015, 3, 1187–1195.  doi: 10.1039/C4TC02255F

    16. [16]

      Jia, J. H.; Chen, X. L.; Liao, J. Z.; Liang, D.; Yang, M. X.; Yu, R.; Lu, C. Z. Highly luminescent copper(Ⅰ) halide complexes chelated with a tetradentate ligand (pnnp): synthesis, structure, photophysical properties and theoretical studies. Dalton Trans. 2019, 48, 1418–1426.  doi: 10.1039/C8DT03452D

    17. [17]

      Zhang, D.; Song, X.; Gillett, A. J.; Drummond, B. H.; Jones, S. T. E.; Li, G.; He, H.; Cai, M.; Credgington, D.; Duan, L. Efficient and stable deep-blue fluorescent organic light-emitting diodes employing a sensitizer with fast triplet upconversion. Adv. Mater. 2020, 32, e1908355.  doi: 10.1002/adma.201908355

    18. [18]

      Chen, X. L.; Jia, J. H.; Yu, R.; Liao, J. Z.; Yang, M. X.; Lu, C. Z. Combining charge-transfer pathways to achieve unique thermally activated delayed fluorescence emitters for high-performance solution-processed, non-doped blue oleds. Angew. Chem., Int. Ed. 2017, 56, 15006–15009.  doi: 10.1002/anie.201709125

  • 加载中
    1. [1]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    5. [5]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    6. [6]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    7. [7]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    8. [8]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    9. [9]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    10. [10]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    11. [11]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    12. [12]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    13. [13]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    14. [14]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    15. [15]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    16. [16]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    17. [17]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    18. [18]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    19. [19]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    20. [20]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

Metrics
  • PDF Downloads(2)
  • Abstract views(273)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return