Citation: Shuo CHEN, Wei HUANG, Ke YANG, Yan-Lian XU, Dong-Hui WANG, Wei-Guo HUANG. Constructing Versatile Hydrophilic Surfaces via in-situ Aminolysis[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1525-1534. doi: 10.14102/j.cnki.0254-5861.2011-3196 shu

Constructing Versatile Hydrophilic Surfaces via in-situ Aminolysis

  • Corresponding author: Yan-Lian XU, ylxu@fjnu.edu.cn Dong-Hui WANG, wangdonghui@fjirsm.ac.cn Wei-Guo HUANG, whuang@fjirsm.ac.cn
  • Received Date: 29 March 2021
    Accepted Date: 28 April 2021

    Fund Project: the funding (E055AJ0101) from FJIRSM-CAS, and National Natural Science foundation of China 51803214

Figures(7)

  • Surface hydrophilization is required for numbers of applications such as biosensor, biomedical implants and marine coating. However, the preparation of hydrophilic surface from a solid substrate still suffers from limited thicknesses, complex procedures, restricted substrates and harsh conditions. Herein, a method based on in-situ aminolysis of poly(pentafluorophenyl acrylate) (pPFPA) capable of generating arbitrary hydrophilic surface is proposed, enabling high design freedom and abundant choices of hydrophilic molecules. Simply immersing pPFPA coated substrates into 3-((3-aminopropyl)dimethylammonio)propane-1-sulfonate (ADPS), β-alanine and amine-terminal poly(ethylene glycol) (NH2-PEG) solutions for two hours drastically reduces the water contact angle of the corresponding surfaces, indicating the high efficiency and excellent generality of such method. Systematical studies reveal that these coatings are able to mitigate fog formation, self-clean the oil contaminant and exhibit excellent antifouling performance against algae. Notably, relying on the fast and quantitative feature of the aminolysis, these hydrophilic surfaces possess excellent regeneration capability and well-recover their hydrophilic feature after being physically damaged. This work represents a facile and universal way to fabricate versatile hydrophilic surfaces for multi-functional applications such as self-cleaning, patterning, sensing, antifogging and anti-biofouling.
  • 加载中
    1. [1]

      Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718.  doi: 10.1002/adma.201001215

    2. [2]

      Sabaté del Río, J.; Henry, O. Y. F.; Jolly, P.; Ingber, D. E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 2019, 14, 1143–1149.  doi: 10.1038/s41565-019-0566-z

    3. [3]

      Zhang, Y.; Gao, H.; Wang, H.; Xu, Z.; Chen, X.; Liu, B.; Shi, Y.; Lu, Y.; Wen, L.; Li, Y. Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries. Adv. Funct. Mater. 2018, 28, 1705962.  doi: 10.1002/adfm.201705962

    4. [4]

      Wang, W.; Tan, B.; Chen, J.; Bao, R.; Zhang, X.; Liang, S.; Shang, Y.; Liang, W.; Cui, Y.; Fan, G. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials 2018, 160, 69–81.  doi: 10.1016/j.biomaterials.2018.01.021

    5. [5]

      Dai, G.; Xie, Q.; Ai, X.; Ma, C.; Zhang, G. Self-generating and self-renewing zwitterionic polymer surfaces for marine anti-biofouling. ACS Appl. Mater. Interfaces 2019, 11, 41750–41757.  doi: 10.1021/acsami.9b16775

    6. [6]

      Azemar, F.; Faÿ, F.; Réhel, K.; Linossier, I. Development of hybrid antifouling paints. Prog. Org. Coat. 2015, 87, 10–19.  doi: 10.1016/j.porgcoat.2015.04.007

    7. [7]

      Xie, Q.; Pan, J.; Ma, C.; Zhang, G. Dynamic surface antifouling: mechanism and systems. Soft Matter. 2019, 15, 1087–1107.  doi: 10.1039/C8SM01853G

    8. [8]

      Yang, W. J.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M.; Rittschof, D. Polymer brush coatings for combating marine biofouling. Prog. Polym. Sci. 2014, 39, 1017–1042.  doi: 10.1016/j.progpolymsci.2014.02.002

    9. [9]

      Yeon, D. K.; Ko, S.; Jeong, S.; Hong, S. P.; Kang, S. M.; Cho, W. K. Oxidation-mediated, zwitterionic polydopamine coatings for marine antifouling applications. Langmuir 2018, 35, 1227–1234.

    10. [10]

      Wang, D.; Liu, H.; Yang, J.; Zhou, S. Seawater-induced healable underwater superoleophobic antifouling coatings. ACS Appl. Mater. Interfaces 2019, 11, 1353–1362.  doi: 10.1021/acsami.8b16464

    11. [11]

      Pranantyo, D.; Xu, L. Q.; Neoh, K. G.; Kang, E. T.; Ng, Y. X.; Teo, S. L. M. Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings. Biomacromolecules 2015, 16, 723–732.  doi: 10.1021/bm501623c

    12. [12]

      Koc, J.; Schönemann, E.; Amuthalingam, A.; Clarke, J.; Finlay, J. A.; Clare, A. S.; Laschewsky, A.; Rosenhahn, A. Low-fouling thin hydrogel coatings made of photo-cross-linked polyzwitterions. Langmuir 2018, 35, 1552–1562.

    13. [13]

      Shao, Q.; Jiang, S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 2015, 27, 15–26.  doi: 10.1002/adma.201404059

    14. [14]

      Gu, Y.; Yang, J.; Zhou, S. A facile immersion-curing approach to surface-tailored poly(vinyl alcohol)/silica underwater superoleophobic coatings with improved transparency and robustness. J. Mater. Chem. A 2017, 5, 10866–10875.  doi: 10.1039/C7TA01499F

    15. [15]

      Goda, T.; Konno, T.; Takai, M.; Moro, T.; Ishihara, K. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials 2006, 27, 5151–5160.  doi: 10.1016/j.biomaterials.2006.05.046

    16. [16]

      Yang, Y.; Luo, H.; Yang, J.; Huang, D.; Zhou, S. Facile UV-curing technique to establish a 3D-grafted poly(ethylene glycol) layer on an epoxy resin base for underwater applications. J. Appl. Polym. Sci. 2016, 133, 43972.

    17. [17]

      Yu, Y.; Yuk, H.; Parada, G. A.; Wu, Y.; Liu, X.; Nabzdyk, C. S.; Youcef-Toumi, K.; Zang, J.; Zhao, X. Multifunctional "hydrogel skins" on diverse polymers with arbitrary shapes. Adv. Mater. 2019, 31, 1807101.  doi: 10.1002/adma.201807101

    18. [18]

      Leng, C.; Sun, S.; Zhang, K.; Jiang, S.; Chen, Z. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Acta Biomater. 2016, 40, 6–15.  doi: 10.1016/j.actbio.2016.02.030

    19. [19]

      Zhao, Y.; Zhou, Q.; Li, Q.; Yao, X.; Wang, J. Passivation of black phosphorus via self-assembled organic monolayers by van der Waals epitaxy. Adv. Mater. 2017, 29, 1603990.  doi: 10.1002/adma.201603990

    20. [20]

      Hasan, A.; Pattanayek, S. K.; Pandey, L. M. Effect of functional groups of self-assembled monolayers on protein adsorption and initial cell adhesion. ACS Biomater. Sci. Eng. 2018, 4, 3224-3233.  doi: 10.1021/acsbiomaterials.8b00795

    21. [21]

      Huang, C. J.; Chu, S. H.; Wang, L. C.; Li, C. H.; Lee, T. R. Bioinspired zwitterionic surface coatings with robust photostability and fouling resistance. ACS Appl. Mater. Interfaces 2015, 7, 23776–23786.  doi: 10.1021/acsami.5b08418

    22. [22]

      Qiu, X.; Ivasyshyn, V.; Qiu, L.; Enache, M.; Dong, J.; Rousseva, S.; Portale, G.; Stöhr, M.; Hummelen, J. C.; Chiechi, R. C. Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. Nat. Mater. 2020, 19, 330–337.  doi: 10.1038/s41563-019-0587-x

    23. [23]

      Devillers, S.; Hennart, A.; Delhalle, J.; Mekhalif, Z. 1-Dodecanethiol self-assembled monolayers on cobalt. Langmuir 2011, 27, 14849–14860.  doi: 10.1021/la2026957

    24. [24]

      Lin, S.; Shang, J.; Theato, P. Facile fabrication of CO2-responsive nanofibers from photo-cross-linked poly(pentafluorophenyl acrylate) nanofibers. ACS Macro. Lett. 2018, 7, 431–436.  doi: 10.1021/acsmacrolett.8b00115

    25. [25]

      Son, H.; Ku, J.; Kim, Y.; Li, S.; Char, K. Amine-reactive poly(pentafluorophenyl acrylate) brush platforms for cleaner protein purification. Biomacromolecules 2018, 19, 951–961.  doi: 10.1021/acs.biomac.7b01736

    26. [26]

      Zhao, H.; Gu, W.; Thielke, M. W.; Sterner, E.; Tsai, T.; Russell, T. P.; Coughlin, E. B.; Theato, P. Functionalized nanoporous thin films and fibers from photocleavable block copolymers featuring activated esters. Macromolecules 2013, 46, 5195–5201.  doi: 10.1021/ma400659h

    27. [27]

      Li, C.; Feng, S.; Li, C.; Sui, Y.; Shen, J.; Huang, C.; Wu, Y.; Huang, W. Synthesizing organo/hydrogel hybrids with diverse programmable patterns and ultrafast self-actuating ability via a site-specific"in situ"transformation strategy. Adv. Funct. Mater. 2020, 30, 2002163.  doi: 10.1002/adfm.202002163

    28. [28]

      Yeh, S. B.; Chen, C. S.; Chen, W. Y.; Huang, C. J. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 2014, 30, 11386–11393.  doi: 10.1021/la502486e

    29. [29]

      Kim, S.; Gim, T.; Jeong, Y.; Ryu, J. H.; Kang, S. M. Facile construction of robust multilayered PEG films on polydopamine-coated solid substrates for marine antifouling applications. ACS Appl. Mater. Interfaces 2018, 10, 7626–7631.  doi: 10.1021/acsami.7b07199

    30. [30]

      Chen, Y.; Zhang, Y.; Shi, L.; Li, J.; Xin, Y.; Yang, T.; Guo, Z. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Appl. Phys. Lett. 2012, 101, 033701.  doi: 10.1063/1.4737167

    31. [31]

      Gu, Y.; Liu, H.; Yang, J.; Zhou, S. Surface-engraved nanocomposite coatings featuring interlocked reflection-reducing, anti-fogging, and contamination-reducing performances. Prog. Org. Coat. 2019, 127, 366–374.  doi: 10.1016/j.porgcoat.2018.11.030

    32. [32]

      Kingshott, P.; Wei, J.; Bagge-Ravn, D.; Gadegaard, N.; Gram, L. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 2003, 19, 6912–6921.  doi: 10.1021/la034032m

    33. [33]

      Park, J. H.; Bae, Y. H. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion. Biomaterials 2002, 23, 1797–1808.  doi: 10.1016/S0142-9612(01)00306-4

    34. [34]

      Wyszogrodzka, M.; Haag, R. Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: a detailed study of their protein resistance. Biomacromolecules 2009, 10, 1043–1054.  doi: 10.1021/bm801093t

    35. [35]

      Del Grosso, C. A.; Leng, C.; Zhang, K.; Hung, H. C.; Jiang, S.; Chen, Z.; Wilker, J. J. Surface hydration for antifouling and bio-adhesion. Chemical Science 2020, 11, 10367–10377.  doi: 10.1039/D0SC03690K

    36. [36]

      Yandi, W.; Mieszkin, S.; di Fino, A.; Martin-Tanchereau, P.; Callow, M. E.; Callow, J. A.; Tyson, L.; Clare, A. S.; Ederth, T. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling. Biofouling 2016, 32, 609–625.  doi: 10.1080/08927014.2016.1170816

    37. [37]

      Xu, G.; Liu, P.; Pranantyo, D.; Xu, L.; Neoh, K. G.; Kang, E. T. Antifouling and antimicrobial coatings from zwitterionic and cationic binary polymer brushes assembled via "click" reactions. Ind. Eng. Chem. Res. 2017, 56, 14479–14488.  doi: 10.1021/acs.iecr.7b03132

    38. [38]

      Bauer, S.; Arpa-Sancet, M. P.; Finlay, J. A.; Callow, M. E.; Callow, J. A.; Rosenhahn, A. Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides. Langmuir 2013, 29, 4039–4047.  doi: 10.1021/la3038022

  • 加载中
    1. [1]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    2. [2]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    3. [3]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    4. [4]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    5. [5]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    6. [6]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    7. [7]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    8. [8]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    9. [9]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    10. [10]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    13. [13]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    14. [14]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    15. [15]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    16. [16]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    17. [17]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    18. [18]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    19. [19]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    20. [20]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

Metrics
  • PDF Downloads(1)
  • Abstract views(311)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return