-
[1]
Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z. X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. C. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424−70.
doi: 10.1002/aenm.201601424
-
[2]
Subramanian, V.; Karki, A.; Gnanasekar, K. I.; Eddy, F. P.; Rambabu, B. Nanocrystalline TiO2 (anatase) for Li-ion batteries. J. Power Sources 2006, 159, 186−192.
doi: 10.1016/j.jpowsour.2006.04.027
-
[3]
An, G. H.; Ahn, H. J. Carbon nanofiber/cobalt oxide nanopyramid core-shell nanowires for high-performance lithium-ion batteries. J. Power Sources 2014, 272, 828−836.
doi: 10.1016/j.jpowsour.2014.09.032
-
[4]
Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 2015, 9, 4026−4035.
doi: 10.1021/acsnano.5b00088
-
[5]
Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428−1436.
doi: 10.1002/adfm.201504695
-
[6]
Wang, H. W.; Jia, G. C.; Guo, Y. Y.; Zhang, Y. Q.; Geng, H. B.; Xu, J.; Mai, W. J.; Yan, Q. Y.; Fan, H. J. Atomic layer deposition of amorphous TiO2 on carbon nanotube networks and their superior Li and Na ion storage properties. Adv. Mater. Interfaces 2016, 3, 1600375−9.
doi: 10.1002/admi.201600375
-
[7]
Wang, X. Y.; Fan, L.; Gong, D. C.; Zhu, J.; Zhang, Q. F.; Lu, B. G. Core-shell Ge@Graphene@ TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 2016, 26, 1104−1111.
doi: 10.1002/adfm.201504589
-
[8]
Etacheri, V.; Yourey, J. E.; Bartlett, B. M. Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 2014, 8, 1491−1499.
doi: 10.1021/nn405534r
-
[9]
Hu, T.; Sun, X.; Sun, H. T.; Yu, M. P.; Lu, F. Y.; Liu, C. S.; Lian, J. Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 2013, 51, 322−326.
doi: 10.1016/j.carbon.2012.08.059
-
[10]
Kim, H. K.; Mhamane, D.; Kim, M. S.; Roh, H. K.; Aravindan, V.; Madhavi, S.; Roh, K. C.; Kim, K. B. TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J. Power Sources 2016, 327, 171−177.
doi: 10.1016/j.jpowsour.2016.07.053
-
[11]
Li, W.; Wang, F.; Liu, Y. P.; Wang, J. X.; Yang, J. P.; Zhang, L. J.; Elzatahry, A. A.; Al-Dahyan, D.; Xia, Y. Y.; Zhao, D. Y. General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett. 2015, 15, 2186−2193.
doi: 10.1021/acs.nanolett.5b00291
-
[12]
Mo, R. W.; Lei, Z. Y.; Sun, K. N.; Rooney, D. Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 2014, 26, 2084−2088.
doi: 10.1002/adma.201304338
-
[13]
Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852−5855.
doi: 10.1021/ja500873u
-
[14]
Ren, G. F.; Hoque, M. N. F.; Liu, J. W.; Warzywoda, J.; Fan, Z. Y. Perpendicular edge oriented graphene foam supporting orthogonal TiO2 (B) nanosheets as freestanding electrode for lithium ion battery. J. Am. Chem. Soc. 2016, 21, 162−171.
-
[15]
Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Nanoparticulate TiO2 (B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 2012, 124, 2206−2209.
doi: 10.1002/ange.201108300
-
[16]
Wang, D. H.; Choi, D.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907−914.
doi: 10.1021/nn900150y
-
[17]
Fu, W. W.; Li, Y. T.; Chen, M. S.; Hu, Y. J.; Liu, B. H.; Zhang, K.; Zhan, C. Y.; Zhang, M.; Shen, Z. R. An orderly arrangement of layered carbon nanosheet/TiO2 nanosheet stack with superior artificially interfacial lithium pseudocapacity. J. Power Sources 2020, 468, 228363−7.
doi: 10.1016/j.jpowsour.2020.228363
-
[18]
Hu, Y. J.; Li, Y. T.; Cheng, J. F.; Chen, M. S.; Fu, W. W.; Liu, B. H.; Zhang, M.; Shen, Z. R. Intercalation of carbon nanosheet into layered TiO2 grain for highly interfacial lithium storage. ACS Appl. Mater. Inter. 2020, 12, 21709−21719.
doi: 10.1021/acsami.0c03775
-
[19]
Li, Y. T.; Chen, M. S.; Cheng, J. F.; Fu, W. W.; Hu, Y. J.; Liu, B. H.; Zhang, M.; Shen, Z. R. Two-dimensional layered ultrathin carbon/TiO2 nanosheet composites for superior pseudocapacitive lithium storage. Langmuir 2020, 36, 2255−2263.
doi: 10.1021/acs.langmuir.9b03889
-
[20]
Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802−1809.
doi: 10.1021/ja8057309
-
[21]
Mirhashemihaghighi, S.; León, B.; Pére Vicente, C.; Tirado, J. L.; Stoyanova, R.; Yoncheva, M.; Zhecheva, E.; Sáez Puche, R.; Arroyo, E. M.; Romero de Paz, J. Lithium storage mechanisms and effect of partial cobalt substitution in manganese carbonate electrodes. Inorg. Chem. 2012, 51, 5554−5560.
doi: 10.1021/ic3004382
-
[22]
Sasaki, T.; Kooli, F.; Iida, M.; Michiue, Y.; Takenouchi, S.; Yajima, Y.; Izumi, F.; Chakoumakos, B. C.; Watanabe, M. A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties. Chem. Mater. 1998, 10, 4123−4128.
doi: 10.1021/cm980535f
-
[23]
Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Ed. 2013, 125, 11971−11975.
doi: 10.1002/ange.201303924
-
[24]
Akalin, E.; Akyüz, S. Structure and vibrational spectra of benzidine. J. Mol. Struct. 2003, 651, 571−577.
-
[25]
Akyüz, S.; Bulat, T.; Özel, A. E.; Basar, G. FT-IR and laser Raman spectroscopic investigation of transition metal halide complexes of benzidine. Vib. Spectrosc 1997, 14, 151−154.
doi: 10.1016/S0924-2031(96)00070-7
-
[26]
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925−14931.
doi: 10.1021/jp074464w
-
[27]
Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 2009, 192, 588−598.
doi: 10.1016/j.jpowsour.2009.02.038
-
[28]
Wu, Q. L.; Xu, J. G.; Yang, X. F.; Lu, F. Q.; He, S. M.; Yang, J. L.; Fan, H. J.; Wu, M. M. Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: capacity enhancement by phase boundaries. Adv. Energy Mater. 2015, 5, 1401756−9.
doi: 10.1002/aenm.201401756
-
[29]
Liu, G. Y.; Zhao, Y. Y.; Tang, Y. F.; Liu, X. D.; Liu, M.; Wu, P. J. In situ sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Metals 2020, 39, 1063−1071.
doi: 10.1007/s12598-020-01462-w
-
[30]
Luo, R.; Ma, Y. T.; Qu, W. J.; Qian, J.; Li, L.; Wu, F.; Chen, R. J. High pseudocapacitance boosts ultrafast, high-capacity sodium storage of 3D graphene foam encapsulated TiO2 architecture. ACS Appl. Mater. Inter. 2020, 12, 23939−23950.
doi: 10.1021/acsami.0c04481
-
[31]
Wang, Y. X.; Yang, J. P.; Chou, S. L.; Liu, H. K.; Zhang, W. X.; Zhao, D. Y.; Dou, S. X. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 1−9.
-
[32]
Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013, 12, 518−522.
doi: 10.1038/nmat3601
-
[33]
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597−1614.
doi: 10.1039/c3ee44164d
-
[34]
Li, D. D.; Zhang, L.; Chen, H. B.; Wang, J.; Ding, L. X.; Wang, S. Q.; Ashman, P. J.; Wang, H. H. Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2016, 4, 8630−8635.
doi: 10.1039/C6TA02139E
-
[35]
Li, S.; Qiu, J. X.; Lai, C.; Ling, M.; Zhao, H. J.; Zhang, S. Q. Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224−230.
doi: 10.1016/j.nanoen.2014.12.032
-
[36]
Zhang, M.; Hu, Y. J.; Cheng, J. F.; Fu, W. W.; Shen, Z. R. Synthesis of highly-ordered two-dimensional hierarchically porous carbon nanosheet stacks as advanced electrode materials for lithium-ion storage. ACS Appl. Energy Mater. 2020, 4, 226−232.
-
[37]
Chen, Y. N.; Fu, K.; Zhu, S. Z.; Luo, W.; Wang, Y. B.; Li, Y. J.; Hitz, E.; Yao, Y. G.; Dai, J. Q.; Wan, J. Y.; Danner, V. A.; Li, T.; Hu, L. B. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 2016, 16, 3616−3623.
doi: 10.1021/acs.nanolett.6b00743
-
[38]
Ventosa, E.; Madej, E.; Zampardi, G.; Mei, B.; Weide, P.; Antoni, H.; Mantia, F. L.; Muhler, M.; Schuhmann, W. Solid electrolyte interphase (SEI) at TiO2 electrodes in Li-ion batteries: defining apparent and effective SEI based on evidence from X-ray photoemission spectroscopy and scanning electrochemical microscopy. ACS Appl. Mater. Inter. 2017, 9, 3123−3130.
doi: 10.1021/acsami.6b13306
-
[39]
Ren, H.; Yu, R. B.; Qi, J.; Zhang, L. J.; Jin, Q.; Wang, D. Hollow multishelled heterostructured anatase/TiO2 (B) with superior rate capability and cycling performance. Adv. Mater. 2019, 31, 1805754−7.
doi: 10.1002/adma.201805754
-
[40]
Hao, B.; Yan, Y.; Wang, X. B.; Chen, G. Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage. ACS Appl. Mater. Inter. 2013, 5, 6285−6291.
doi: 10.1021/am4013215
-
[41]
Lou, S. F.; Zhao, Y.; Wang, J. J.; Yin, G. P.; Du, C. Y.; Sun, X. L. Ti-based oxide anode materials for advanced electrochemical energy storage: lithium/sodium ion batteries and hybrid pseudocapacitors. Small 2019, 15, 1904740−44.
doi: 10.1002/smll.201904740
-
[42]
Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911−1917.
doi: 10.1021/nl504764m
-
[43]
Que, L. F.; Yu, F. D.; Wang, Z. B.; Gu, D. M. Pseudocapacitance of TiO2-x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 2018, 14, 1704508−9.
doi: 10.1002/smll.201704508
-
[44]
Wei, H.; Rodriguez, E. F.; Hollenkamp, A. F.; Bhatt, A. I.; Chen, D. H.; Caruso, R. A. High reversible pseudocapacity in mesoporous yolk-shell anatase TiO2/TiO2 (B) microspheres used as anodes for Li-ion batteries. Adv. Funct. Mater. 2017, 27, 1703270−9.
doi: 10.1002/adfm.201703270
-
[45]
Xing, Y. L.; Wang, S. B.; Fang, B. Z.; Song, G.; Wilkinson, D. P.; Zhang, S. C. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J. Power Sources 2018, 385, 10−17.
doi: 10.1016/j.jpowsour.2018.02.077
-
[46]
Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518−522.
doi: 10.1038/nmat3601
-
[47]
Jiang, J. M.; Zhang, Y. D.; An, Y. F.; Wu, L. Y.; Zhu, Q.; Dou, H.; Zhang, X. G. Engineering ultrathin MoS2 nanosheets anchored on N-Doped carbon microspheres with pseudocapacitive properties for high-performance lithium-ion capacitors. Small. Methods 2019, 7, 1900081−10.