Citation: Chong-Yu HUANG, Shi-Yu FENG, Wei-Guo HUANG. Pendant Group Effect of Polymeric Dielectrics on the Performance of Organic Thin Film Transistors[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1541-1549. doi: 10.14102/j.cnki.0254-5861.2011-3167 shu

Pendant Group Effect of Polymeric Dielectrics on the Performance of Organic Thin Film Transistors

  • Corresponding author: Wei-Guo HUANG, whuang@fjirsm.ac.cn
  • Received Date: 2 March 2021
    Accepted Date: 13 April 2021

    Fund Project: the start-up funding from FJIRSM-CAS, and National Natural Science foundation of China 51803214

Figures(5)

  • Polymer dielectric is superior to its inorganic counterparts due to not only the low cost and intrinsic flexibility, but also the readily tunable dielectric constant, surface charge trap density, charge ejection and releasing ability and dipole moment, and all these properties play decisive roles in regulating the characteristic and performances of organic thin film transistors (OTFT). However, systematical studies on the relationship between structure and properties of polymeric dielectrics are rare. To this end, a series of polymeric dielectrics with well-defined linkages (ester or amide bonds) and predesigned pendant groups (alkyl- and aromatic-groups) are synthesized in high yields. Detailed studies show that the polyamide dielectrics exhibit higher dielectric constant, surface charge trapping density, and better charge storage capability than corresponding polyester dielectrics. Further, increasing the π electron delocalization of the pendant groups generally benefits the charge storage property and transistor memory behavior. Theoretical calculation reveals that the hydrogen bonding between the linkage groups and the energy alignment between polymeric dielectric and semiconductor are responsible for the observed performance differences of OTFT with different polymeric dielectrics. These results may shine light on the design of polymeric dielectrics for OTFTs with different applications.
  • 加载中
    1. [1]

      Ortiz, R. P.; Facchetti, A.; Marks, T. J. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 2010, 110, 205–239.  doi: 10.1021/cr9001275

    2. [2]

      Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018, 118, 5690–5754.  doi: 10.1021/acs.chemrev.8b00045

    3. [3]

      Magliulo, M.; Manoli, K.; Macchia, E.; Palazzo, G.; Torsi, L. Tailoring functional interlayers in organic field-effect transistor biosensors. Adv. Mater. 2015, 27, 7528–7551.  doi: 10.1002/adma.201403477

    4. [4]

      Lee, W.; Kim, D.; Rivnay, J.; Matsuhisa, N.; Lonjaret, T.; Yokota, T.; Yawo, H.; Sekino, M.; Malliaras, G. G.; Someya, T. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Adv. Mater. 2016, 28, 9722–9728.  doi: 10.1002/adma.201602237

    5. [5]

      Li, Y.; Huang, X.; Hu, Z.; Jiang, P.; Li, S.; Tanaka, T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl. Mater. Interfaces 2011, 3, 4396–4403.  doi: 10.1021/am2010459

    6. [6]

      Byun, H. R.; You, E. A.; Ha, Y. G. Multifunctional hybrid multilayer gate dielectrics with tunable surface energy for ultralow-power organic and amorphous oxide thin-film transistors. ACS Appl. Mater. Interfaces 2017, 9, 7347–7354.  doi: 10.1021/acsami.6b15798

    7. [7]

      Everaerts, K.; Emery, J. D.; Jariwala, D.; Karmel, H. J.; Sangwan, V. K.; Prabhumirashi, P. L.; Geier, M. L.; McMorrow, J. J.; Bedzyk, M. J.; Facchetti, A.; Hersam, M. C.; Marks, T. J. Ambient-processable high capacitance hafnia-organic self-assembled nanodielectrics. J. Am. Chem. Soc. 2013, 135, 8926–8939.  doi: 10.1021/ja4019429

    8. [8]

      Wang, Y.; Huang, X.; Li, T.; Li, L.; Guo, X.; Jiang, P. Polymer-based gate dielectrics for organic field-effect transistors. Chem. Mater. 2019, 31, 2212–2240.  doi: 10.1021/acs.chemmater.8b03904

    9. [9]

      Yi, H. T.; Payne, M. M.; Anthony, J. E.; Podzorov, V. Ultra-flexible solution-processed organic field-effect transistors. Nat. Commun. 2012, 3, 1259.  doi: 10.1038/ncomms2263

    10. [10]

      Wu, Y. L.; Lin, J. J.; Ma, C. M. Fabrication of an organic thin-film transistor by direct deposit of a pentacene layer onto a silicon substrate. J. Phys. Chem. Solids 2008, 69, 730–733.  doi: 10.1016/j.jpcs.2007.07.089

    11. [11]

      Jang, J.; Nam, S.; Chung, D. S.; Kim, S. H.; Yun, W. M.; Park, C. E. High tg cyclic olefin copolymer gate dielectrics for N, N΄-ditridecyl perylene diimide based field-effect transistors: improving performance and stability with thermal treatment. Adv. Funct. Mater. 2010, 20, 2611–2618.  doi: 10.1002/adfm.201000383

    12. [12]

      Nugraha, M. I.; Häusermann, R.; Watanabe, S.; Matsui, H.; Sytnyk, M.; Heiss, W.; Takeya, J.; Loi, M. A. Broadening of distribution of trap states in PbS quantum dot field-effect transistors with high-k dielectrics. ACS Appl. Mater. Interfaces 2017, 9, 4719–4724.  doi: 10.1021/acsami.6b14934

    13. [13]

      Veres, J.; Ogier, S. D.; Leeming, S. W.; Cupertino, D. C.; Mohialdin Khaffaf, S. Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 2003, 13, 199–204.  doi: 10.1002/adfm.200390030

    14. [14]

      Xia, Y.; Cho, J. H.; Lee, J.; Ruden, P. P.; Frisbie, C. D. Comparison of the mobility-carrier density relation in polymer and single-crystal organic transistors employing vacuum and liquid gate dielectrics. Adv. Mater. 2009, 21, 2174–2179.  doi: 10.1002/adma.200803437

    15. [15]

      Sun, X.; Liu, Y.; Di, C. A.; Wen, Y.; Guo, Y.; Zhang, L.; Zhao, Y.; Yu, G. Interfacial heterogeneity of surface energy in organic field-effect transistors. Adv. Mater. 2011, 23, 1009–1014.  doi: 10.1002/adma.201004187

    16. [16]

      Kim, C.; Facchetti, A.; Marks, T. J. Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. Science 2007, 318, 76–80.  doi: 10.1126/science.1146458

    17. [17]

      Orgiu, E.; Locci, S.; Fraboni, B.; Scavetta, E.; Lugli, P.; Bonfiglio, A. Analysis of the hysteresis in organic thin-film transistors with polymeric gate dielectric. Org. Electron. 2011, 12, 477–485.  doi: 10.1016/j.orgel.2010.12.014

    18. [18]

      Yang, H.; Kim, S. H.; Yang, L.; Yang, S. Y.; Park, C. E. Pentacene nanostructures on surface-hydrophobicity-controlled polymer/SiO2 bilayer gate-dielectrics. Adv. Mater. 2007, 19, 2868–2872.  doi: 10.1002/adma.200700560

    19. [19]

      Alameddine, B.; Rice, A. H.; Luscombe, C.; Jenny, T. A. Synthesis of arylamine tribenzopentaphenes and investigation of their hole mobility. ChemistryOpen 2015, 4, 453–456.  doi: 10.1002/open.201500064

    20. [20]

      Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Lim, B.; Kim, D. Y. Polarity effects of polymer gate electrets on non-volatile organic field-effect transistor memory. Adv. Funct. Mater. 2008, 18, 3678–3685.  doi: 10.1002/adfm.200800378

    21. [21]

      Kumar, R.; Goswami, M.; Sumpter, B. G.; Novikov, V. N.; Sokolov, A. P. Effects of backbone rigidity on the local structure and dynamics in polymer melts and glasses. Phys. Chem. Chem. Phys. 2013, 15, 4604–4609.  doi: 10.1039/c3cp43737j

    22. [22]

      Zhang, H. C.; Deng, R. N.; Wang, J.; Li, X.; Chen, Y. M.; Liu, K. W.; Taubert, C.; Cheng, S. Z. D.; Zhu, Y. Crystalline organic pigment-based field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 21891–21899.  doi: 10.1021/acsami.7b03170

    23. [23]

      Zhang, H. C.; Li, R.; Deng, Z. F.; Cui, S. W.; Wang, Y. H.; Zheng, M.; Yang, W. J. π-Conjugated oligomers based on aminobenzodifuranone and diketopyrrolopyrrole. Dyes Pigm. 2020, 181, 108552.  doi: 10.1016/j.dyepig.2020.108552

    24. [24]

      Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506.  doi: 10.1021/ja100936w

    25. [25]

      Wu, P.; Chaudret, R.; Hu, X.; Yang, W. Noncovalent interaction analysis in fluctuating environments. J. Chem. Theory. Comput. 2013, 9, 2226–2234.  doi: 10.1021/ct4001087

    26. [26]

      Contreras-García, J.; Yang, W.; Johnson, E. R. Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. J. Phys. Chem. A 2011, 115, 12983–12990.  doi: 10.1021/jp204278k

    27. [27]

      Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 2019, 40, 2868–2881.  doi: 10.1002/jcc.26068

    28. [28]

      Ji, D.; Li, T.; Liu, J.; Amirjalayer, S.; Zhong, M.; Zhang, Z. Y.; Huang, X.; Wei, Z.; Dong, H.; Hu, W.; Fuchs, H. Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nat. Commun. 2019, 10, 12.  doi: 10.1038/s41467-018-07943-y

    29. [29]

      Wu, X.; Feng, S.; Shen, J.; Huang, W.; Li, C.; Li, C.; Sui, Y.; Huang, W. Nonvolatile transistor memory based on a high-k dielectric polymer blend for multilevel data storage, encryption, and protection. Chem. Mater. 2020, 32, 3641–3650.  doi: 10.1021/acs.chemmater.0c01271

    30. [30]

      Tsai, T. D.; Chang, J. W.; Wen, T. C.; Guo, T. F. Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements. Adv. Funct. Mater. 2013, 23, 4206–4214.  doi: 10.1002/adfm.201203694

    31. [31]

      Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.  doi: 10.1039/b508541a

  • 加载中
    1. [1]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    2. [2]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    3. [3]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    4. [4]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    5. [5]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    6. [6]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    7. [7]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    8. [8]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    9. [9]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    10. [10]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    11. [11]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    12. [12]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    13. [13]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    14. [14]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    15. [15]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    16. [16]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    17. [17]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    18. [18]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    19. [19]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    20. [20]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

Metrics
  • PDF Downloads(1)
  • Abstract views(307)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return