Citation: Tong-Qing SUN, Qian-Qian WANG, Yong-Fa KONG, Jing-Jun XU. Synthesis, Structure and Characterization of a New Silicophosphate, K2SiP4O13, with a Six-fold Coordinated Si[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 256-263. doi: 10.14102/j.cnki.0254-5861.2011-2851 shu

Synthesis, Structure and Characterization of a New Silicophosphate, K2SiP4O13, with a Six-fold Coordinated Si

  • Corresponding author: Tong-Qing SUN, suntq@nankai.edu.cn
  • Received Date: 16 April 2020
    Accepted Date: 10 June 2020

    Fund Project: the Natural Science Foundation of Tianjin City 17JCYBJC17800the National Natural Science Foundation of China 21271109the National Natural Science Foundation of China 11674179

Figures(5)

  • A potassium silicophosphate, K2SiP4O13, has been synthesized in molten polyphosphoric acid. It crystalizes in the triclinic space group P\begin{document}$ \overline 1 $\end{document} (No. 2) with a = 4.8327(10), b = 7.7403(15), c = 14.485(3) Å, α = 82.29(3)°, β = 83.31(3)°, γ = 81.95°, V = 529.02(19) Å3, Z = 2. The crystallographic structure features 2D layers of [SiP4O13] in the ab plane with counter cations K+ residing among the layers, and the anionic framework of [SiP4O13] is composed of six-fold coordinated Si atoms and tetraphosphate anions by sharing vertex O atoms. The title compound was characterized by powder X-ray diffraction, IR and Raman spectroscopies, UV-vis diffuse reflectance spectroscopy, thermogravimetry and differential scanning calorimetry.
  • 加载中
    1. [1]

      Styskalik, A.; Babiak, M.; Machac, P.; Relichova, B.; Pinkas, J. New adamantane-like silicophosphate cage and its reactivity toward tris(pentafluorophenyl)borane. Inorg. Chem. 2017, 56, 10699‒10705.  doi: 10.1021/acs.inorgchem.7b01572

    2. [2]

      Zeng, H. D.; Jiang, Q.; Liu, Z.; Li, X.; Ren, J.; Chen, G. R.; Liu, F. D.; Peng, S. Unique sodium phosphosilicate glasses designed through extended topological constraint theory. J. Phys. Chem. B 2014, 118, 5177‒5193.  doi: 10.1021/jp5018357

    3. [3]

      Sawangboon, N.; Nizamutdinova, A.; Uesbeck, T.; Limbach, R.; Meechoowas, E.; Tapasa, K.; Möncke, D.; Wondraczek, L.; Kamitsos, E. I.; Wüllen, L. V.; Brauer, D. S. Modification of silicophosphate glass composition, structure, and properties via crucible material and melting conditions. Int. J. Appl. Glass Sci. 2020, 11, 46‒57.  doi: 10.1111/ijag.13958

    4. [4]

      Abdelghany, A. M.; Zeyada, H. M.; ElBatal, H. A.; Fetouh, R. Synthesis and spectral properties of Nd2O3-doped sodium silicophosphate glass. Silicon 2016, 8, 325‒330.  doi: 10.1007/s12633-015-9308-5

    5. [5]

      Unithrattil, S.; Arunkumar, P.; Kim, Y. H.; Kim, H. J.; Vu, N. H.; Heo, J.; Chung, W. J.; Im, W. B. A phosphosilicate compound, NaCa3PSiO8 structure solution and luminescence properties. Inorg. Chem. 2017, 56, 15130‒15137.  doi: 10.1021/acs.inorgchem.7b02456

    6. [6]

      Deng, Y.; Eames, C.; Chotard, J. N.; Lalère, F.; Seznec, V.; Emge, S.; Pecher, O.; Grey, C. P.; Masquelier, C.; Islam, M. S. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4-Li3PO4 solid electrolytes. J. Am. Chem. Soc. 2015, 137, 9136‒9145.  doi: 10.1021/jacs.5b04444

    7. [7]

      Porkodi, P.; Yegnaraman, V.; Kamaraj, P.; Kalyanavalli, V.; Jeyakumar, D. Synthesis of NASICON — a molecular precursor-based approach. Chem. Mater. 2008, 20, 6410‒6419.  doi: 10.1021/cm800208k

    8. [8]

      Stearns, L. A.; Groy, T. L.; Leinenweber, K. High-pressure synthesis and crystal structure of silicon phosphate hydroxide, SiPO4(OH). J. Solid State Chem. 2005, 178, 2594‒2061.  doi: 10.1016/j.jssc.2005.05.030

    9. [9]

      Kowalke, J.; Arnold, C.; Ponomarev, I.; Jäger, C.; Kroll, P.; Brendler, E.; Kroke, E. Structural insight into layered silicon hydrogen phosphates containing [SiO6] octahedra prepared by different reaction routes. Eur. J. Inorg. Chem. 2019, 828‒836.

    10. [10]

      Leinenweber, K.; Stearns, L. A.; Nite, J. M.; Németh, P.; Groy, T. L. Structure of a new form of silicon phosphate (SiP2O7) synthesized at high pressures and temperatures. J. Solid State Chem. 2012, 190, 221‒225.  doi: 10.1016/j.jssc.2012.02.031

    11. [11]

      Poojary, D. M.; Borade, R. B.; Clearfield, A. Structural characterization of silicon orthophosphate. Inorg. Chim. Acta 1993, 208, 23‒29.  doi: 10.1016/S0020-1693(00)82879-0

    12. [12]

      Islam, S. M.; Glaum, R.; Pelka, A.; Daniels, J.; Hoffbauer, W. The first phosphates of heptavalent rhenium. Z. Anorg. Allg. Chem. 2013, 639, 2463‒2472.  doi: 10.1002/zaac.201300289

    13. [13]

      Köenigstein, K.; Jansen, M. Ein einfacher weg zu silicium in oktaedrischer sauerstoffkoordination. Chem. Ber. 1994, 127, 1213‒1218.  doi: 10.1002/cber.19941270706

    14. [14]

      Khabbouchia, M.; Hosnia, K.; Meznia, M.; Srasraa, E. Simplified synthesis of silicophosphate materials using an activated metakaolin as a natural source of active silica. Appl. Clay Sci. 2018, 158, 169‒176.  doi: 10.1016/j.clay.2018.03.027

    15. [15]

      Ding, Q. R.; Zhao, S. E.; Xiao, H.; Li, Y. Q.; Liu, S.; Li, L. N.; Li, C. S.; Wang, Y. S.; Hong, M. C.; Luo, J. H. An uncommon hypervalent fluorooxosilicophosphate. Chem. Asian J. 2019, 14, 4174‒4178.  doi: 10.1002/asia.201901410

    16. [16]

      Han, G. P.; Lei, B. H.; Yang, Z. H.; Wang, Y.; Pan, S. L. A fluorooxosilicophosphate with an unprecedented SiO2F4 species. Angew. Chem. Int. Ed. 2018, 57, 9828‒9832.  doi: 10.1002/anie.201805759

    17. [17]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339‒341.  doi: 10.1107/S0021889808042726

    18. [18]

      Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3‒8.

    19. [19]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3‒8.

    20. [20]

      Spek, A. L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148‒155.

    21. [21]

      Zhao, S. E.; Gong, P. F.; Luo, S. Y.; Bai, L.; Lin, Z. S.; Ji, C. M.; Chen, T. L.; Hong, M. C.; Luo, J. H. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3− units. J. Am. Chem. Soc. 2014, 136, 8560‒8563.  doi: 10.1021/ja504319x

    22. [22]

      Zhong, Y.; Shan, P.; Sun, T. Q.; Hu, Z. P.; Liu, H. D.; Liu, S. G.; Kong, Y. F.; Xu, J. J. Growth and theoretical study on the deep ultraviolet transparent β-CsBa2(PO3)5 nonlinear optical crystal. CrystEngComm. 2019, 21, 4690‒4695.  doi: 10.1039/C9CE00636B

    23. [23]

      Halasyamani, P. S. Asymmetric cation coordination in oxide materials:   influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem. Mater. 2004, 16, 3586‒3592.  doi: 10.1021/cm049297g

    24. [24]

      Brown, I. D. Recent developments in the methods and applications of the bond valence model. Chem. Rev. 2009, 109, 6858‒6919.  doi: 10.1021/cr900053k

    25. [25]

      Zhao, D.; Xie, Z.; Hu, J. M.; Zhang, H.; Zhang, W. L.; Yang, S. L.; Cheng, W. D. Structure determination, electronic and optical properties of NaGe2P3O12 and Cs2GeP4O13. J. Mol. Struct. 2009, 922, 127‒134.  doi: 10.1016/j.molstruc.2009.01.009

    26. [26]

      Chudinova, N.; Murashova, E. Synthesis and structure of double phosphates of titanium and alkalimetals. Proc. Est. Acad. Sci. Chem. 2000, 49, 29‒35.

    27. [27]

      Kraus, W.; Nolze, G. POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996, 29, 301‒303.  doi: 10.1107/S0021889895014920

    28. [28]

      Schildhammer, D.; Fuhrmann, G.; Petschnig, L. L.; Wurst, K.; Vitzthum, D.; Seibald, M.; Schottenberger, H.; Huppertz, H. Structural redetermination and photoluminescence properties of the niobium oxyphosphate (NbO)2P4O13. Inorg. Chem. 2017, 56, 2736‒2741.  doi: 10.1021/acs.inorgchem.6b02891

    29. [29]

      Rao, K. J.; Baskaran, N.; Ramakrishnan, P. A.; Ravi, B. G.; Karthikeyan, A. Structural and lithium ion transport studies in sol gel-prepared lithium silicophosphate glasses. Chem. Mater. 1998, 10, 3109‒3123.  doi: 10.1021/cm980216o

    30. [30]

      Calahoo, C.; Zwanziger, J. W.; Butler, I. S. Mechanical-structural investigation of ion-exchanged lithium silicate glass using micro-Raman spectroscopy. J. Phys. Chem. C 2016, 120, 7213‒7232.

    31. [31]

      Arroyabe, E.; Kaindl, R.; Töobbens, D. M.; Kahlenberg, V. Synthesis, crystal structure, and vibrational spectroscopy of K2Ca4Si8O21 — an unusual single-layer silicate containing Q2 and Q3 units. Inorg. Chem. 2009, 48, 11929‒11934.  doi: 10.1021/ic901762u

    32. [32]

      Zhu, Z. Y.; Gu, S. X.; Li, S. S.; Chen, C.; Xiao, S. Q.; Tao, H. Z. Effects of six-fold coordinated silicon on structure and properties of BaO-SiO2-P2O5 glasses. J. Wuhan Univ. Technol.-Mat. Sci. Ed. 2019, 34, 1043‒1048.

    33. [33]

      Bai, Z. Y.; Hu, C. L.; Liu, L. H.; Zhang, L. Z.; Huang, Y. S.; Yuan, F. F.; Lin, Z. B. KMg(H2O)PO4: a deep-ultraviolet transparent nonlinear optical material derived from KTiOPO4. Chem. Mater. 2019, 31, 9540‒9545.

    34. [34]

      Bai, Z. Y.; Liu, L. H.; Zhang, L. Z.; Huang, Y. S.; Yuan, F. F.; Lin, Z. B. K2SrP4O12: a deep-UV transparent cyclophosphate as a nonlinear optical crystal. Chem. Commun. 2019, 55, 8454‒8457.

    35. [35]

      Lee, M. H.; Yang, C. H.; Jan, J. H. Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials. Phys. Rev. B 2004, 70, 235110.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    19. [19]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    20. [20]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

Metrics
  • PDF Downloads(1)
  • Abstract views(342)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return