Citation: Meng-Yue LI, Xiu-Yuan XIE, Xin-Tao WU, Xiao-Fang LI, Hua LIN. Quaternary Selenophosphate Cs2ZnP2Se6 Featuring Unique One-dimensional Chains and Exhibiting Remarkable Photo-electrochemical Response[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 246-255. doi: 10.14102/j.cnki.0254-5861.2011-2822 shu

Quaternary Selenophosphate Cs2ZnP2Se6 Featuring Unique One-dimensional Chains and Exhibiting Remarkable Photo-electrochemical Response

  • Corresponding author: Xiao-Fang LI, lixiaofang@fjirsm.ac.cn Hua LIN, linhua@fjirsm.ac.cn
  • Received Date: 25 March 2020
    Accepted Date: 8 April 2020

    Fund Project: the National Natural Science Foundation of China 21771179the National Natural Science Foundation of China 21301175the Natural Science Foundation of Fujian Province 2019J01133

Figures(8)

  • New functional materials of metal chalcophosphates have been receiving increasing attention due to their wide structural diversity and technologically promising properties. In this work, a quaternary selenophosphate, Cs2ZnP2Se6, has been successfully prepared by the high-temperature solid state reactions with a modified reactive CsCl flux. Single-crystal X-ray diffraction analyses show that Cs2ZnP2Se6 crystallizes in triclinic space group P\begin{document}$ \overline 1 $\end{document} with a = 7.66000(10), b = 7.712(7), c = 12.7599(3) Å, α = 96.911(18)°, β = 104.367(14)°, γ = 109.276(13)°, V = 672.16 Å3 and Z = 2. The major structure feature is the one-dimensional (1D) chain comprised of alternating units of tetrahedrally coordinated Zn2+ ions to the ethane-like [P2Se6]4– units, in which counterbalanced Cs cations are accommodated. Significantly, photo-electrochemical measurement indicated that the title compound was photo-responsive under visible-light illumination. Moreover, the optical gap of 2.67 eV for Cs2ZnP2Se6 was deduced from the UV/Vis reflectance spectroscopy and theoretical calculation shows an indirect band gap with an electronic transfer excitation of Se-4p to Zn-3d/4p and P-3p orbitals. This work presents not only a novel potential application of metal chalcophosphates, but also a facile approach to prepare alkali metal-containing chalcogenides.
  • 加载中
    1. [1]

      Chung, I.; Do, J.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. APSe6 (A = K, Rb, and Cs):   polymeric selenophosphates with reversible phase-change properties. Inorg. Chem. 2004, 43, 2762–2764.  doi: 10.1021/ic035448q

    2. [2]

      Morris, C. D.; Chung, I.; Park, S.; Harrison, C. M.; Clark, D. J.; Jang, J. I.; Kanatzidis, M. G. Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation. J. Am. Chem. Soc. 2012, 134, 20733–20744.  doi: 10.1021/ja309386e

    3. [3]

      Vysochanskii, Y. Ferroelectricity in complex chalcogenides M΄M΄΄P2X6 (M΄, M΄΄ = Sn, Pb, Cu, In, Cr; X = S, Se). Ferroelectrics 1998, 218, 275–282.  doi: 10.1080/00150199808227155

    4. [4]

      Ok, K. M.; Chi, E. O.; Halasyamani, P. S. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 2006, 35, 710–717.  doi: 10.1039/b511119f

    5. [5]

      Chung, I.; Jang, J. I.; Gave, M. A.; Weliky, D. P.; Kanatzidis, M. G. Low valent phosphorus in the molecular anions [P5Se12]5– and β-[P6Se12]4–: phase change behavior and near infrared second harmonic generation. Chem. Commun. 2007, 4998–5000.

    6. [6]

      Xia, H. P.; Ma, Q. Experimental study on nonlinear-optical property of Ag4P2Se6. J. Alloys Compd. 2019, 780, 727–733.  doi: 10.1016/j.jallcom.2018.11.403

    7. [7]

      Chung, I.; Malliakas, C. D.; Jang, J. I.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. Helical polymer 2[P2Se6]2–:   strong second harmonic generation response and phase-change properties of its K and Rb salts. J. Am. Chem. Soc. 2007, 129, 14996–15006.  doi: 10.1021/ja075096c

    8. [8]

      Chung, I.; Kim, M. G.; Jang, J. I.; He, J.; Ketterson, J. B.; Kanatzidis, M. G. Strongly nonlinear optical chalcogenide thin films of APSe6 (A = K, Rb) from spin-coating. Angew. Chem. Int. Ed. 2011, 50, 10867–10870.  doi: 10.1002/anie.201103691

    9. [9]

      Breshears, J. D.; Kanatzidis, M. G. β-KMP2Se6 (M = Sb, Bi):   kinetically accessible phases obtained from rapid crystallization of amorphous precursors. J. Am. Chem. Soc. 2000, 122, 7839–7840.  doi: 10.1021/ja001270k

    10. [10]

      Wang, P. L.; Liu, Z.; Chen, P.; Peters, J. A.; Tan, G.; Im, J.; Lin, W.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G. Hard radiation detection from the selenophosphate Pb2P2Se6. Adv. Funct. Mater. 2015, 25, 4874–4881.  doi: 10.1002/adfm.201501826

    11. [11]

      Weldert, K. S.; Zeier, W. G.; Day, T. W.; Panthöfer, M.; Snyder, G. J.; Tremel, W. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. J. Am. Chem. Soc. 2014, 136, 12035−12040.  doi: 10.1021/ja5056092

    12. [12]

      Chen, J. H.; Dorhout, P. K.; Ostenson, J. E. A comparative study of two new structure types. Synthesis and structural and electronic characterization of K(RE)P2Se6 (RE = Y, La, Ce, Pr, Gd). Inorg. Chem. 1996, 35, 5627–5633.  doi: 10.1021/ic9516121

    13. [13]

      Chondroudis, K.; Kanatzidis, M. G. 2[P2Se4]: a novel polyanion in K3RuP5Se10 formation of Ru–P bonds in a molten polyselenophosphate flux. Angew. Chem. Int. Ed. 1997, 36, 1324–1326.  doi: 10.1002/anie.199713241

    14. [14]

      Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. 2[ZrPSe6]: a soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts. J. Am. Chem. Soc. 2008, 130, 12270–12272.  doi: 10.1021/ja804166m

    15. [15]

      Brockner, W.; Becker, R.; Eisenmann, B.; Schäfer, H. Kristallstruktur und schwingungsspektren der caesium-und kalium-hexathiometadiphosphate Cs2P2S6 und K2P2S6. Z. Anorg. Allg. Chem. 1985, 520, 51–58.  doi: 10.1002/zaac.19855200107

    16. [16]

      Liao, J. H.; Varotsis, C.; Kanatzidis, M. G. Syntheses, structures, and properties of six novel alkali metal tin sulfides: K2Sn2S8, alpha.-Rb2Sn2S8, beta.-Rb2Sn2S8, K2Sn2S5, Cs2Sn2S6, and Cs2SnS14. Inorg. Chem. 1993, 32, 2453–2462.  doi: 10.1021/ic00063a042

    17. [17]

      Kanatzidis, M. G.; Park, Y. Molten salt synthesis of low-dimensional ternary chalcogenides: novel structure types in the K/Hg/Q system (Q = S, Se). Chem. Mater. 1990, 2, 99–101.  doi: 10.1021/cm00008a006

    18. [18]

      Liao, J. H.; Varotsis, C.; Kanatzidis, M. G. Quaternary rubidium copper tin sulfides Rb2Cu2SnS4, A2Cu2Sn2S6 (A = Na, K, Rb, Cs), A2Cu2Sn2Se6 (A = K, Rb), potassium gold tin sulfides, K2Au2SnS4, and K2Au2Sn2S6. Syntheses, structures, and properties of new solid-state chalcogenides based on tetrahedral [SnS4]4− units. Chem. Mater. 1993, 5, 1561–1569.  doi: 10.1021/cm00034a029

    19. [19]

      Knaust, J. M.; Dorhout, P. K. Synthesis and structures of Na4P2Se6, Cs3PSe4, and Rb4P2Se9. J. Chem. Crystallogr. 2006, 36, 217–223.  doi: 10.1007/s10870-005-9050-8

    20. [20]

      Chondroudis, K.; Kanatzidis, M. G.; Sayettat, J.; Jobic, S.; Brec, R. Palladium chemistry in molten alkali metal polychalcophosphate fluxes: synthesis and characterization of K4Pd(PS4)2, Cs4Pd(PSe4)2, Cs10Pd(PSe4)4, KPdPS4, K2PdP2S6, and Cs2PdP2Se6. Inorg. Chem. 1997, 36, 5859–5868.  doi: 10.1021/ic970593n

    21. [21]

      Francisco, R. H. P.; Tepe, T.; Eckert, H. A study of the system Li–P–Se. J. Solid State Chem. 1993, 107, 452–459.  doi: 10.1006/jssc.1993.1369

    22. [22]

      McCarthy, T. J.; Kanatzidis, M. G. Synthesis in molten alkali metal polyselenophosphate fluxes: a new family of transition metal selenophosphate compounds, A2MP2Se6 (A = K, Rb, Cs; M = Mn, Fe) and A2M΄P2Se6 (A = K, Cs; M΄ = Cu, Ag). Inorg. Chem. 1995, 34, 1257–1267.  doi: 10.1021/ic00109a037

    23. [23]

      Jandali, M. Z.; Eulenberger, G.; Hahn, H. Die kristallstrukturen von Hg2P2S6 und Hg2P2Se6. Z. Anorg. Allg. Chem. 1978, 447, 105–118.  doi: 10.1002/zaac.19784470110

    24. [24]

      Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. Chemistry in molten alkali metal polyselenophosphate fluxes, influence of flux composition on dimensionality: layers and chains in APbPSe4, A4Pb(PSe4)2 (A = Rb, Cs), and K4Eu(PSe4)2. Inorg. Chem. 1996, 35, 840–844.  doi: 10.1021/ic950479+

    25. [25]

      Gave, M. A.; Canlas, C. G.; Chung, I.; Iyer, R. G.; Kanatzidis, M. G.; Weliky, D. P. Cs4P2Se10: a new compound discovered with the application of solid-state and high temperature NMR. J. Solid State Chem. 2007, 180, 2877–2884.  doi: 10.1016/j.jssc.2007.08.002

    26. [26]

      Chung, I.; Holmes, D.; Weliky, D. P.; Kanatzidis, M. G. [P3Se7]3−: a phosphorus-rich square-ring selenophosphate. Inorg. Chem. 2010, 49, 3092–3094.  doi: 10.1021/ic902561h

    27. [27]

      Chung, I.; Karst, A. L.; Weliky, D. P.; Kanatzidis, M. G. [P6Se12]4–: a phosphorus-rich selenophosphate with low-valent P centers. Inorg. Chem. 2006, 45, 2785–2787.  doi: 10.1021/ic0601135

    28. [28]

      Chondroudis, K.; Kanatzidis, M. G. [P8Se18]6–:   a new oligomeric selenophosphate anion with P4+ and P3+ centers and pyramidal [PSe3] fragments. Inorg. Chem. 1998, 37, 2582–2584.  doi: 10.1021/ic980024v

    29. [29]

      Becker, R.; Brockner, W.; Schäfer, H. Kristallstruktur und schwingungsspektren des di-blei-hexaselenohypodiphosphates Pb2P2Se6/crystal structure and vibrational spectra of Pb2P2Se6. Z. Naturforsch. 1984, 39, 357–361.  doi: 10.1515/zna-1984-0407

    30. [30]

      Israel, R.; De Gelder, R.; Smits, J. M. M.; Beurskens, P. T.; Eijt, S. W. H.; Rasing, T.; Van Kempen, H.; Maior, M. M.; Motrija, S. F. Crystal structures of di-tin-hexa(seleno)hypodiphosphate, Sn2P2Se6, in the ferroelectric and para-electric phase. Z. Kristallogr. 1998, 213, 34–41.

    31. [31]

      Jörgens, S.; Mewis, A.; Hoffmann, R. D.; Poettgen, R.; Mosel, B. D. New hexachalcogeno-hypodiphosphates of alkaline-earth metals and europium. Z. Anorg. Allg. Chem. 2003, 629, 429–433.  doi: 10.1002/zaac.200390071

    32. [32]

      Chan, B. C.; Feng, P. L.; Hulvey, Z.; Dorhout, P. K. Crystal structure of tetrapotassium hexaselenidohypodiphosphate, K4P2Se6. Z. Krist-new Cryst. St. 2005, 220, 9–10.

    33. [33]

      Toffoli, P.; Khodadad, P.; Rodier, N. Crystal-structure of silver hexaselenohypodiphosphate, Ag4P2Se6. Acta Crystallogr. B 1978, 34, 1779−1781.  doi: 10.1107/S056774087800669X

    34. [34]

      Brockner, W.; Ohse, L.; Pätzmann, U.; Eisenmann, B.; Schäfer, H. Crystal structure of tetrapotassium hexaselenidohypodiphosphate, K4P2Se6. Z. Krist-new Cryst. St. 1985, 40a, 1248–1252.

    35. [35]

      Coste, S.; Kopnin, E.; Evain, M.; Jobic, S.; Brec, R.; Chondroudis, K.; Kanatzidis, M. G. Polychalcogenophosphate flux synthesis of 1D-KInP2Se6 and 1D and 3D-NaCrP2S6. Solid State Sci. 2002, 4, 709–716.  doi: 10.1016/S1293-2558(02)01317-1

    36. [36]

      Syrigos, J. C.; Kanatzidis, M. G. Scandium selenophosphates: structure and properties of K4Sc2(PSe4)2(P2Se6). Inorg. Chem. 2016, 55, 4664–4668.  doi: 10.1021/acs.inorgchem.6b00535

    37. [37]

      Chondroudis, K.; Kanatzidis, M. G. K4In2(PSe5)2(P2Se6) and Rb3Sn(PSe5)(P2Se6): one-dimensional compounds with mixed selenophosphate anions. J. Solid State Chem. 1998, 136, 79–86.  doi: 10.1006/jssc.1997.7659

    38. [38]

      Rothenberger, A.; Wang, H.; Chung, D.; Kanatzidis, M. G. Structural diversity by mixing chalcogen atoms in the chalcophosphate system K/In/P/Q (Q = S, Se). Inorg. Chem. 2010, 49, 1144–1151.  doi: 10.1021/ic902105j

    39. [39]

      Chondroudis, K.; Kanatzidis, M. G. New lanthanide selenophosphates. Influence of flux composition on the distribution of [PSe4]3–/[P2Se6]4– units and the stabilization of the low-dimensional compounds A3REP2Se8, and A2(RE)P2Se7 (A = Rb, Cs; RE = Ce, Gd). Inorg. Chem. 1998, 37, 3792–3797.  doi: 10.1021/ic980025n

    40. [40]

      Aitken, J. A.; Evain, M.; Iordanidis, L.; Kanatzidis, M. G. NaCeP2Se6, Cu0.4Ce1.2P2Se6, Ce4(P2Se6)3, and the incommensurately modulated AgCeP2Se6:   new selenophosphates featuring the ethane-like [P2Se6]4– anion. Inorg. Chem. 2002, 41, 180–191.  doi: 10.1021/ic010618p

    41. [41]

      Evenson IV, C. R.; Dorhout, P. K. Selenophosphate phase diagrams developed in conjunction with the synthesis of the new compounds K2La(P2Se6)1/2(PSe4), K3La(PSe4)2, K4La0.67(PSe4)2, K9-xLa1+x/3(PSe4)4 (x = 0.5), and KEuPSe4. Inorg. Chem. 2001, 40, 2875–2883.  doi: 10.1021/ic000595z

    42. [42]

      Chung, I.; Biswas, K.; Song, J. H.; Androulakis, J.; Chondroudis, K.; Paraskevopoulos, K. M.; Freeman, A. J.; Kanatzidis, M. G. Rb4Sn5P4Se20: a semimetallic selenophosphate. Angew. Chem. Int. Ed. 2011, 50, 8834–8838.  doi: 10.1002/anie.201104050

    43. [43]

      Briggs Piccoli, P. M.; Abney, K. D.; Schoonover, J. R.; Dorhout, P. K. Synthesis and structural characterization of quaternary thorium selenophosphates:   A2ThP3Se9 (A = K, Rb) and Cs4Th2P5Se17. Inorg. Chem. 2000, 39, 2970–2976.  doi: 10.1021/ic990767w

    44. [44]

      Klingen, W.; Eulenberger, G.; Hahn, H. Uber die kristallstrukturen von Fe2P2Se6 und Fe2P2S6. Z. Anorg. Allg. Chem. 1973, 401, 97–112.  doi: 10.1002/zaac.19734010113

    45. [45]

      Jörgens, S.; Mewis, A. Die kristallstrukturen von hexachalcogeno-hypodiphosphaten des magnesiums und zinks. Z. Anorg. Allg. Chem. 2004, 630, 51–57.  doi: 10.1002/zaac.200300244

    46. [46]

      McCarthy, T. J.; Kanatzidis, M. G. Coordination chemistry of [P2Se6]4– in molten fluxes: isolation of the structurally complex KMP2Se6 (M = Sb, Bi). J. Chem. Soc., Chem. Commun. 1994, 1089–1090.

    47. [47]

      Chung, I.; Kanatzidis, M. G. Stabilization of Sn2+ in K10Sn3(P2Se6)4 and Cs2SnP2Se6 derived from a basic flux. Inorg. Chem. 2011, 50, 412–414.  doi: 10.1021/ic101140r

    48. [48]

      Kanatzidis, M. G. New directions in synthetic solid state chemistry: chalcophosphate salt fluxes for discovery of new multinary solids. Curr. Opin. Solid State Mater. Sci. 1997, 2, 139–149.  doi: 10.1016/S1359-0286(97)80058-7

    49. [49]

      Lin, H.; Chen, L.; Zhou, L. J.; Wu, L. M. Functionalization based on the substitutional flexibility: strong middle IR nonlinear optical selenides AX4X5Se12. J. Am. Chem. Soc. 2013, 135, 12914–12921.  doi: 10.1021/ja4074084

    50. [50]

      Lin, H.; Liu, Y.; Zhou, L. J.; Zhao, H. J.; Chen, L. Strong infrared NLO tellurides with multifunction: CsX4In5Te12 (X = Mn, Zn, Cd). Inorg. Chem. 2016, 55, 4470–4475.  doi: 10.1021/acs.inorgchem.6b00254

    51. [51]

      Yu, P.; Zhou, L. J.; Chen, L. Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K). J. Am. Chem. Soc. 2012, 134, 2227–2235.  doi: 10.1021/ja209711x

    52. [52]

      Li, Y. Y.; Liu, P. F.; Lin, H.; Wang, M. T.; Chen, L. The effect of indium substitution on the structure and NLO properties of Ba6Cs2Ga10Se20Cl4. Inorg. Chem. Front. 2016, 3, 952–958.  doi: 10.1039/C6QI00104A

    53. [53]

      Zheng, Y. J.; Liu, P. F.; Wu, X. T.; Wu, L. M.; Lin, H. Synthesis, crystal structure, physical properties and theoretical studies of new ternary sulfide with closed cavities: CsYb7S11. Chin. J. Struct. Chem. 2017, 36, 1780–1790.

    54. [54]

      Lin, H.; Chen, H.; Liu, P. F.; Yu, J. S.; Zheng, Y. J.; Khan, M. A.; Chen, L.; Wu, L. M. Syntheses, structures, physical and electronic properties of quaternary semiconductors: Cs[RE9Cd4Se18] (RE = Tb-Tm). Dalton Trans. 2016, 45, 5775–5782.  doi: 10.1039/C6DT00193A

    55. [55]

      Lin, H.; Chen, H.; Lin, Z. X.; Zhao, H. J.; Liu, P. F.; Yu, J. S.; Chen, L. (Cs6Cl)6Cs3[Ga53Se96]: a unique long period-stacking structure of layers made from Ga2Se6 dimers via cis or trans intralayer linking. Inorg. Chem. 2016, 55, 1014–1016.  doi: 10.1021/acs.inorgchem.5b02846

    56. [56]

      Lin, H.; Chen, H.; Zheng, Y. J.; Yu, J. S.; Wu, X. T.; Wu, L. M. Coexistence of strong second harmonic generation response and wide band gap in AZn4Ga5S12 (A = K, Rb, Cs) with 3D diamond-like frameworks. Chem.-Eur. J. 2017, 23, 10407–10412.  doi: 10.1002/chem.201701679

    57. [57]

      Lin, H.; Zhou, L. J.; Chen, L. Sulfides with strong nonlinear optical activity and thermochromism: ACd4Ga5S12 (A = K, Rb, Cs). Chem. Mater. 2012, 24, 3406–3414.  doi: 10.1021/cm301550a

    58. [58]

      Lin, H.; Chen, H.; Zheng, Y. J.; Yu, J. S.; Wu, L. M. AX4X5Te12 (A = Rb, Cs; X = Mn, Zn, Cd; X = Ga, In): quaternary semiconducting tellurides with very low thermal conductivities. Dalton Trans. 2016, 45, 17606–17609.  doi: 10.1039/C6DT03630A

    59. [59]

      Huang-Fu, S. X.; Shen, J. N.; Lin, H.; Chen, L.; Wu, L. M. Supercubooctahedron (Cs6Cl)2Cs5[Ga15Ge9Se48] exhibiting both cation and anion exchange. Chem. Eur. J. 2015, 21, 9809–9815.  doi: 10.1002/chem.201405719

    60. [60]

      Lin, H.; Chen, L.; Yu, J. S.; Chen, H.; Wu, L. M. Infrared SHG materials CsM3Se6 (M = Ga/Sn, In/Sn): phase matchability controlled by dipole moment of the asymmetric building unit. Chem. Mater. 2017, 29, 499–503.  doi: 10.1021/acs.chemmater.6b05026

    61. [61]

      Lin, H.; Li, L. H.; Chen, L. Diverse closed cavities in condensed rare earth metal-chalcogenide matrixes: Cs[Lu7Q11] and (ClCs6)[RE21Q34] (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 4588–4596.  doi: 10.1021/ic202494w

    62. [62]

      Lin, H.; Zheng, Y. J.; Chen, H.; Hu, X. N.; Yu, J. S.; Wu, L. M. Non-centrosymmetric selenides AZn4In5Se12 (A = Rb, Cs): synthesis, characterization and nonlinear optical properties. Chem.-Asian J. 2017, 12, 453–458.  doi: 10.1002/asia.201601548

    63. [63]

      Lin, H.; Shen, J. N.; Chen, L.; Wu, L. M. Quaternary supertetrahedra-layered telluride CsMnInTe3: why does this type of chalcogenide tilt? Inorg. Chem. 2013, 52, 10726–10728.  doi: 10.1021/ic4018618

    64. [64]

      Lin, H.; Shen, J. N.; Shi, Y. F.; Li, L. H.; Chen, L. Quaternary rare-earth selenides with closed cavities: Cs[RE9Mn4Se18] (RE = Ho-Lu). Inorg. Chem. Front. 2015, 2, 298–305.  doi: 10.1039/C4QI00202D

    65. [65]

      Lin, H.; Chen, H.; Yu, J. S.; Zheng, Y. J.; Liu, P. F.; Muhammad, A. K.; Wu, L. M. CsBi4Te6: a new facile synthetic method and mid-temperature thermoelectric performance. Dalton Trans. 2016, 45, 11931–11934.  doi: 10.1039/C6DT02109C

    66. [66]

      Lin, H.; Chen, H.; Zheng, Y. J.; Yu, J. S.; Wu, X. T.; Wu, L. M. Two excellent phase-matchable infrared nonlinear-optical materials based on the 3D diamond-like frameworks: RbGaSn2Se6 and RbInSn2Se6. Dalton Trans. 2017, 46, 7714–7721.  doi: 10.1039/C7DT01384A

    67. [67]

      Zheng, Y. J.; Shi, Y. F.; Tian, C. B.; Lin, H.; Wu, L. M.; Wu, X. T.; Zhu, Q. L. An unprecedented pentanary chalcohalide with the Mn atoms in two chemical environments: unique bonding characteristics and magnetic properties. Chem. Commun. 2019, 55, 79–82.  doi: 10.1039/C8CC08380K

    68. [68]

      Chen, H.; Liu, P. F.; Lin, H.; Wu, L. M.; Wu, X. T. Solid-state preparation, structural characterization, physical properties and theoretical studies of a series of novel rare-earth metal-chalcogenides with unprecedented closed cavities. Cryst. Growth Des. 2019, 19, 444–452.  doi: 10.1021/acs.cgd.8b01541

    69. [69]

      Wang, P.; Lin, H. Synthesis, structure, and property of a three-dimensional channel quaternary compound: Cs0.75(6)Er4.43(5)In3.32(6)S12. Chin. J. Struct. Chem. 2013, 32, 1873–1879.

    70. [70]

      Haynes, A. S.; Lee, K.; Kanatzidis, M. G. One-dimensional zinc selenophosphates: A2ZnP2Se6 (A = K, Rb, Cs). Z. Anorg. Allg. Chem. 2016, 642, 1120−1125.  doi: 10.1002/zaac.201600231

    71. [71]

      Crystal Clear, Version 1. 3. 5; Rigaku Corp., Woodlands, TX 1999.

    72. [72]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112−122.  doi: 10.1107/S0108767307043930

    73. [73]

      Gelato, L. M.; Parthe, E. STRUCTURE TIDY - a computer program to standardize crystal structure data. J. Appl. Crystallogr. 1987, 20, 139–143.  doi: 10.1107/S0021889887086965

    74. [74]

      Kortüm, G. Reflectance Spectroscopy, Springer-Verlag, New York 1969.

    75. [75]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169−11186.  doi: 10.1103/PhysRevB.54.11169

    76. [76]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758−1775.  doi: 10.1103/PhysRevB.59.1758

    77. [77]

      Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244−13249.  doi: 10.1103/PhysRevB.45.13244

    78. [78]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    79. [79]

      Kanichtschewa, A. S.; Mikhajlov, J. N.; Lazarev, V. B.; Moschchalkova, N. A. Crystal-structure of CsSbSe2. Dokl. Akad. Nauk. 1980, 252, 872−875.

    80. [80]

      Deiseroth, H. J. Ungewö hnliche lineare, oligomere anionen (GanSe2n+2)(n+4)− (n = 2, 4, 6) in festen selenogallaten des casiums. Z. Kristallogr. 1984, 166, 283−295.

    81. [81]

      Shi, Y. F.; Li, X. F.; Zhang, Y. X.; Lin, H.; Ma, Z. J.; Wu, L. M.; Wu, X. T.; Zhu, Q. L. [(Ba19Cl4)(Ga6Si12O42S8)]: a two-dimensional wide-band-gap layered oxysulfide with mixed-anion chemical bonding and photocurrent response. Inorg. Chem. 2019, 58, 6588−6592.  doi: 10.1021/acs.inorgchem.9b00653

    82. [82]

      Lin, H.; Shen, J. N.; Zhu, W. W.; Liu, Y.; Wu, X. T.; Zhu, Q. L.; Wu, L. M. Two new phases in the ternary RE–Ga–S systems with the unique interlinkage of GaS4 building units: synthesis, structure, and properties. Dalton Trans. 2017, 46, 13731−13738.  doi: 10.1039/C7DT02545A

    83. [83]

      Liu, C.; Hou, P.; Chai, W.; Tian, J.; Zheng, X.; Shen, Y.; Zhi, M.; Zhou, C.; Liu, Y. Hydrazine-hydrothermal syntheses, characterizations and photo-electrochemical properties of two quaternary chalcogenido antimonates (Ⅲ) BaCuSbQ3 (Q = S, Se). J. Alloys Compd. 2016, 679, 420−425.  doi: 10.1016/j.jallcom.2016.04.096

    84. [84]

      Burke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136, 150901−9.  doi: 10.1063/1.4704546

    85. [85]

      Christensen, N. E.; Svane, A.; Peltzer, E. L.; Blancá, Y. Electronic and structural properties of SnO under pressure. Phys. Rev. B: Condens. Matter. Mater. Phys. 2005, 72, 014109−7.  doi: 10.1103/PhysRevB.72.014109

    86. [86]

      Govaerts, K.; Saniz, R.; Partoens, B.; Lamoen, D. van der Waals bonding and the quasiparticle band structure of SnO from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 235210−9.  doi: 10.1103/PhysRevB.87.235210

  • 加载中
    1. [1]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    6. [6]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    7. [7]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    8. [8]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    9. [9]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    10. [10]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    11. [11]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    12. [12]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    13. [13]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    16. [16]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    17. [17]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    18. [18]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    19. [19]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    20. [20]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

Metrics
  • PDF Downloads(1)
  • Abstract views(380)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return