Citation: Ke WANG, Yong-Yu PANG, Huan XIE, Yuan SUN, Guo-Liang CHAI. Synergistic Effect of Ta2O5/F−C Composites for Effective Electrosynthesis of Hydrogen Peroxide from O2 Reduction[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 225-232. doi: 10.14102/j.cnki.0254-5861.2011-2817 shu

Synergistic Effect of Ta2O5/F−C Composites for Effective Electrosynthesis of Hydrogen Peroxide from O2 Reduction

  • Corresponding author: Guo-Liang CHAI, g.chai@fjirsm.ac.cn
  • Received Date: 23 March 2020
    Accepted Date: 20 April 2020

    Fund Project: the National Natural Science Foundation of China 21703248the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(6)

  • The electrosynthesis of H2O2 as an environmentally friendly green process has attracted great attention due to the importance of H2O2 in industry and human lives. In this work, a new strategy was proposed to improve the electrical conductivity and H2O2 selectivity of transition metal oxides catalysts. F−C (F doped carbon) was coupled with Ta2O5 by calcining polyvinylidene fluoride (PVDF) as the carbon source using one step method. The Ta2O5/F−C composite catalysts show an excellent H2O2 selectivity of more than 80% as well as high reactivity at 2.52 mA/cm2, which is greatly enhanced compared to the counterparts of F−C (selectivity of 59%) and Ta2O5-800 (current density of 0.85 mA/cm2) in 0.1 M KOH solution. The onset potential for H2O2 production on Ta2O5/F−C composites is 0.78 V in 0.1 M KOH, which indicates a negligible overpotential. In addition, H2O2 selectivity of the catalyst can be stabilized at more than 80% after 10 hours of electrolysis in alkaline electrolyte. The high performance due to the introduction of F−C increases the conductivity of Ta2O5 and the synergistic effect between F−C and Ta2O5. This work proposed an efficient synergistic effect among F-doped C and Ta2O5 for H2O2 production.
  • 加载中
    1. [1]

      Zhou, W.; Meng, X.; Gao, J.; Alshawabkeh, A. N. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: a state-of-the-art review. Chemosphere 2019, 225, 588−607.  doi: 10.1016/j.chemosphere.2019.03.042

    2. [2]

      Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Hydrogen peroxidesynthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 2006, 45, 6962−6984.  doi: 10.1002/anie.200503779

    3. [3]

      Yi, Y.; Wang, L.; Li, G.; Guo, H. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 2016, 6, 1593−1610.  doi: 10.1039/C5CY01567G

    4. [4]

      Drogui, P.; Elmaleh, S.; Rumeau, M.; Bernard, C.; Rambaud, A. Hydrogen peroxide production by water electrolysis: application to disinfection. J. Appl. Electrochem. 2001, 31, 877−882.  doi: 10.1023/A:1017588221369

    5. [5]

      Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 180190−9.

    6. [6]

      Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457−2474.  doi: 10.1021/cr020471z

    7. [7]

      Pan, Z.; Wang, K.; Wang, Y.; Tsiakaras, P.; Song, S. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: a novel strategy for graphite felt activation. Appl. Catal. B-Environ. 2018, 237, 392−400.  doi: 10.1016/j.apcatb.2018.05.079

    8. [8]

      García-Serna, J.; Moreno, T.; Biasi, P.; Cocero, M. J.; Mikkola, J. P.; Salmi, T. O. Engineering in direct synthesis of hydrogen peroxide: targets, reactors and guidelines for operational conditions. Green Chem. 2014, 16, 2320−2343.  doi: 10.1039/c3gc41600c

    9. [9]

      Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv.  Mater. 2019, 31, 18029−20.

    10. [10]

      Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. Acs Catal. 2018, 8, 4064−4081.  doi: 10.1021/acscatal.8b00217

    11. [11]

      Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; de León, C. P.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442−458.  doi: 10.1038/s41570-019-0110-6

    12. [12]

      Zhang, J.; Zhang, H.; Cheng, M. J.; Lu, Q. Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts. Small 2019, 190284−5.

    13. [13]

      Blanco-Brieva, G.; de Frutos Escrig, M. P.; Campos-Martin, J. M.; Fierro, J. L. Direct synthesis of hydrogen peroxide on palladium catalyst supported on sulfonic acid-functionalized silica. Green Chem. 2010, 12, 1163−1166.  doi: 10.1039/c003700a

    14. [14]

      Pritchard, J. C.; He, Q.; Ntainjua, E. N.; Piccinini, M.; Edwards, J. K.; Herzing, A. A.; Carley, A. F.; Moulijn, J. A.; Kiely, C. J.; Hutchings, G. J. The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chem. 2010, 12, 915−921.  doi: 10.1039/b924472g

    15. [15]

      Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226−231.  doi: 10.1126/science.aay1844

    16. [16]

      Isaka, Y.; Oyama, K.; Yamada, Y.; Suenobu, T.; Fukuzumi, S. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catal. Sci. Technol. 2016, 6, 681−684.  doi: 10.1039/C5CY01845E

    17. [17]

      Weng, B.; Wu, J.; Zhang, N.; Xu, Y. J. Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene-WO3 nanorod photocatalysts. Langmuir 2014, 30, 5574−5584.  doi: 10.1021/la4048566

    18. [18]

      Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. Enabling direct H2O2 production through rational electrocatalyst design. Nat. mater. 2013, 12, 1137−1143.  doi: 10.1038/nmat3795

    19. [19]

      Aveiro, L. R.; da Silva, A. G.; Antonin, V. S.; Candido, E. G.; Parreira, L. S.; Geonmonond, R. S.; de Freitas, I. C.; Lanza, M. R.; Camargo, P. H.; Santos, M. C. Carbon-supported MnO2 nanoflowers: introducing oxygen vacancies for optimized volcano-type eelectrocatalytic activities towards H2O2 generation. Electrochim. Acta 2018, 268, 101−110.  doi: 10.1016/j.electacta.2018.02.077

    20. [20]

      Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898−905.  doi: 10.1021/cm901698s

    21. [21]

      Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780−786.  doi: 10.1038/nmat3087

    22. [22]

      Moraes, A.; Assumpção, M.; Papai, R.; Gaubeur, I.; Rocha, R. D. S.; Reis, R.; Calegaro, M. L.; Lanza, M. R. D. V.; Santos, M. C. D. Use of a vanadium nanostructured material for hydrogen peroxide electrogeneration. J. Electroanal. Chem. 2014, 719, 127−132.  doi: 10.1016/j.jelechem.2014.02.009

    23. [23]

      Ye, Y.; Kuai, L.; Geng, B. A template-free route to a Fe3O4-Co3O4 yolk-shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. J. Mater. Chem. 2012, 22, 19132−19138.  doi: 10.1039/c2jm33893a

    24. [24]

      Xu, A.; Han, W.; Li, J.; Sun, X.; Shen, J.; Wang, L. Electrogeneration of hydrogen peroxide using Ti/IrO2-Ta2O5 anode in dual tubular membranes electro-Fenton reactor for the degradation of tricyclazole without aeration. Chem. Eng. J. 2016, 295, 152−159.  doi: 10.1016/j.cej.2016.03.001

    25. [25]

      Barros, W. R.; Wei, Q.; Zhang, G.; Sun, S.; Lanza, M. R.; Tavares, A. C. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on printex carbon and graphene. Electrochim. Acta 2015, 162, 263−270.  doi: 10.1016/j.electacta.2015.02.175

    26. [26]

      Carneiro, J. F.; Rocha, R. S.; Hammer, P.; Bertazzoli, R.; Lanza, M. Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5. Appl. Catal. A-Gen. 2016, 517, 161−167.  doi: 10.1016/j.apcata.2016.03.013

    27. [27]

      Oh, T.; Kim, J. Y.; Shin, Y.; Engelhard, M.; Weil, K. S. Effects of tungsten oxide addition on the electrochemical performance of nanoscale tantalum oxide-based electrocatalysts for proton exchange membrane (pem) fuel cells. J. Power Sources 2011, 196, 6099−6103.  doi: 10.1016/j.jpowsour.2011.03.058

    28. [28]

      Chisaka, M.; Ishihara, A.; Suito, K.; Ota, K. I.; Muramoto, H. Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media. Electrochim. Acta 2013, 88, 697−707.  doi: 10.1016/j.electacta.2012.10.137

    29. [29]

      Kim, J. Y.; Oh, T. K.; Shin, Y.; Bonnett, J.; Weil, K. S. A novel non-platinum group electrocatalyst for pem fuel cell application. Int. J. Hydrogen Energy 2011, 36, 4557−4564.  doi: 10.1016/j.ijhydene.2010.05.016

    30. [30]

      Assumpção, M. H. M. T.; Moraes, A.; De Souza, R.; Calegaro, M.; Lanza, M.; Leite, E.; Cordeiro, M.; Hammer, P.; Santos, M. C. D. Influence of the preparation method and the support on H2O2 electrogeneration using cerium oxide nanoparticles. Electrochim. Acta 2013, 111, 339−343.  doi: 10.1016/j.electacta.2013.07.187

    31. [31]

      Carneiro, J. F.; Paulo, M. J.; Siaj, M.; Tavares, A. C.; Lanza, M. R. Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J. Catal. 2015, 332, 51−61.  doi: 10.1016/j.jcat.2015.08.027

    32. [32]

      Carneiro, J. F.; Trevelin, L. C.; Lima, A. S.; Meloni, G. N.; Bertotti, M.; Hammer, P.; Bertazzoli, R.; Lanza, M. R. Synthesis and characterization of ZrO2/C as electrocatalyst for oxygen reduction to H2O2. Electrocatalysis 2017, 8, 189−195.  doi: 10.1007/s12678-017-0355-0

    33. [33]

      Li, Z.; Liu, J.; Li, J.; Shen, J. Template free synthesis of crystallized nanoporous F-Ta2O5 spheres for effective photocatalytic hydrogen production. Nanoscale 2012, 4, 3867−70.  doi: 10.1039/c2nr30721a

    34. [34]

      Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156−162.  doi: 10.1038/s41929-017-0017-x

    35. [35]

      Yuan, D.; Wei, Z.; Han, P.; Yang, C.; Huang, L.; Gu, Z.; Ding, Y.; Ma, J.; Zheng, G. Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis. J. Mater. Chem. A 2019, 7, 16979−16983.  doi: 10.1039/C9TA04141A

    36. [36]

      Guo, L.; He, H.; Ren, Y.; Wang, C.; Li, M. Core-shell SiO@ F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries. Chem. Eng. J. 2018, 335, 32−40.  doi: 10.1016/j.cej.2017.10.145

    37. [37]

      Li, Z.; Xu, J.; Wang, J.; Niu, D.; Hu, S.; Zhang, X. Well-dispersed amorphous Ta2O5 chemically grafted onto multi-walled carbon nanotubes for high-performance lithium sulfur battery. Int. J. Electrochem. Sci 2019, 14, 6628−6642.

    38. [38]

      Yu, X.; Li, W.; Li, Z.; Liu, J.; Hu, P. Defect engineered Ta2O5 nanorod: one-pot synthesis, visible-light driven hydrogen generation and mechanism. Appl. Catal. B-Environ. 2017, 217, 48−56.  doi: 10.1016/j.apcatb.2017.05.024

    39. [39]

      Zhuang, Y.; Seong, J. G.; Do, Y. S.; Jo, H. J.; Cui, Z.; Lee, J.; Lee, Y. M.; Guiver, M. D. Intrinsically microporous soluble polyimides incorporating Tröger's base for membrane gas separation. Macromolecules 2014, 47, 3254−3262.  doi: 10.1021/ma5007073

    40. [40]

      Sun, Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spoeri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; Paul, B.; Schmack, R.; Kraehnert, R.; Cuenya, B. R.; Strasser P. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844−2856.  doi: 10.1021/acscatal.7b03464

    41. [41]

      Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y.; Yan, X.; Nilsson, E. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851−7859.  doi: 10.1021/jacs.8b02798

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    3. [3]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    4. [4]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    5. [5]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    6. [6]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    9. [9]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    10. [10]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    11. [11]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    12. [12]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    13. [13]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    14. [14]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    15. [15]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    16. [16]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    17. [17]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    18. [18]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    19. [19]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    20. [20]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

Metrics
  • PDF Downloads(1)
  • Abstract views(362)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return