Temperature-dependent Syntheses of Two Manganese(Ⅱ) Coordination Compounds Based on an Ether-bridged Tetracarbolylic Acid

Yu LI Jiang WU Jin-Zhong GU Wen-Da QIU An-Sheng FENG

Citation:  Yu LI, Jiang WU, Jin-Zhong GU, Wen-Da QIU, An-Sheng FENG. Temperature-dependent Syntheses of Two Manganese(Ⅱ) Coordination Compounds Based on an Ether-bridged Tetracarbolylic Acid[J]. Chinese Journal of Structural Chemistry, 2020, 39(4): 727-736. doi: 10.14102/j.cnki.0254-5861.2011-2483 shu

Temperature-dependent Syntheses of Two Manganese(Ⅱ) Coordination Compounds Based on an Ether-bridged Tetracarbolylic Acid

English

  • In recent years, coordination polymers have increasingly attracted considerable attention for their charming structures and potential applications, for instance, in gas absorption and separation[1-3], luminescence[4, 5], catalysis[6, 7], molecular magnetism[8, 9], sensors[10, 11], etc. A high diversity of factors can affect the structure and functional properties of coordination polymers, such as the nature and coordination preferences of metal nodes, types of organic spacers and linkers, and various reaction conditions[12-18].

    In this regard, an exploration of various organic ligands that combine different functional groups within the same building block molecule constitutes an interesting direction of research aiming at the design of new coordination polymers[19-21]. Apart from multifunctional organic ligands, 1,10-phenanthroline (phen) is frequently applied as a simple secondary N-donor building block to tune the coordination environment and stabilizes structures because of its efficient π∙∙∙π stacking interaction[16, 18].

    Following our interest in the exploration of novel and poorly investigated multicarboxylic acids for the design of coordination polymers[6, 7, 16, 18, 22-26], in the present study we selected 2,3,3΄,4΄-diphenyl ether tetracarboxylic acid (H4L) as a main building block. The selection of H4L has been governed by the following reasons. (1) This ligand contains two phenyl rings that are interconnected by a rotatable O-ether group that can provide a subtle conformational adaptation. (2) H4L contains two different types of functionalities (i.e., -COOH and O-ether) and has nine potential coordination sites, which can result in diverse coordination patterns and high dimensionalities, especially when acting as a multiply bridging spacer. (3) This tetracarboxylic acid block remains poorly used for the generation of coordination polymers.

    Herein, we report the synthesis, crystal structures, and magnetic properties of Mn(Ⅱ) coordination compounds with H4L ligands.

    All chemicals and solvents were of AR grade and used without further purification. Carbon, hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer. IR spectra were recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer. Thermogravimetric analysis (TGA) was performed under N2 atmosphere with a heating rate of 10 K/min on a LINSEIS STA PT1600 thermal analyzer. PXRD (powder X-ray diffraction) data were obtained on a Rigaku-Dmax 2400 diffractometer (Cu radiation, λ = 1.54060 Å). Magnetic susceptibility data were collected in the 2~300 K temperature range with a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T. A correction was made for the diamagnetic contribution prior to data analysis.

    A mixture of MnCl2⋅4H2O (0.040 g, 0.2 mmol), H4L (0.035 g, 0.1 mmol), phen (0.040 g, 0.2 mmol), and NaOH (0.016 g, 0.4 mmol) in distilled water (10 mL) was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless-steel vessel, and heated at 393 K for 3 days, followed by cooling to room temperature at a rate of 10 K·h–1. Yellow block-shaped crystals of 1 were isolated manually, and washed with distilled water. Yield: 60% (based on phen). Anal. Calcd. (%) for C64H46Mn2N8O13: C, 61.74; H, 3.72; N, 9.00. Found (%): C, 61.48; H, 3.70; N, 9.02. IR (KBr, cm–1): 3421m, 3048w, 1608s, 1589s, 1515m, 1457w, 1422m, 1384s, 1256w, 1231w, 1144w, 1095w, 982w, 894w, 850m, 814w, 776w, 722m, 634w, 565w. νOH 3421 and 3048, vas(CO2) 1608 and 1589, vs(CO2) 1422 and 1384.

    Synthesis of 2 was similar to 1 except at 433 K instead of 393 K. Yellow block-shaped crystals of 2 were isolated manually, and washed with distilled water. Yield: 61% (based on H4L). Anal. Calcd. (%) for C40H24Mn2N4O10: C, 57.85; H, 2.91; N, 6.75. Found (%): C, 58.12; H, 2.93; N, 6.71. IR (KBr, cm–1): 3410w, 3048w, 1599s, 1560m, 1535m, 1466w, 1407s, 1359m, 1256w, 1231w, 1207w, 1139w, 1099w, 1055w, 976w, 923w, 849m, 800w, 776w, 727m, 697w, 634w, 600w, 556w. νOH 3410 and 3048, vas(CO2) 1599, 1560 and 1535, vs(CO2) 1407 and 1359.

    Two single crystals of the title compounds were mounted on a Bruker CCD diffractometer equipped with a graphite-monochromatic Mo (λ = 0.71073 Å) radiation using a φ-ω scan mode at 293(2) K. The structures were solved by direct methods with SHELXS-97[27] and refined by full-matrix least-squares techniques on F2 with SHELXL-97[28]. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms (except those bound to water molecules) were placed in the calculated positions with fixed isotropic thermal parameters and included in structure factor calculations in the final stage of full-matrix least-squares refinement. The hydrogen atoms of water molecules were located by difference Fourier maps and constrained to ride on their parent O atoms. Some lattice solvent molecules in 1 and 2 are highly disordered and were removed using the SQUEEZE routine in PLATON[29]. The number of solvent H2O molecules was obtained on the basis of elemental and thermogravimetric analyses. Detailed crystallographic data and structural refinements of compounds 1 and 2 are listed in Table 1. The selected important bond parameters are given in Table 2. The hydrogen bonds and π∙∙∙π interactions in crystal packing of compounds 1 and 2 are listed in Table 3.

    Table 1

    Table 1.  Crystal Data and Structure Refinement for 1 and 2
    DownLoad: CSV
    Compound 1 2
    Formula C64H46Mn2N8O13 C40H24Mn2N4O10
    Formula weight 1244.97 830.52
    Crystal system Triclinic Monoclinic
    Space group P$ \overline 1 $ P21/c
    a (Å) 12.0415(8) 11.7387(15)
    b (Å) 14.2876(11) 11.6216(15)
    c (Å) 16.6562(12) 24.146(3)
    α (°) 96.645(6) 90
    β (°) 90.226(6) 90.651(11)
    γ (°) 98.319(6) 90
    V3) 2815.8(4) 3293.8(7)
    Z 2 4
    Dc (g/cm3) 1.447 1.638
    µ (mm–1) 0.522 0.836
    Independent reflections 9941 5808
    Rint 0.0718 0.1065
    F(000) 1260 1648
    S 0.990 0.926
    R, wR (I > 2σ(I)) 0.0722, 0.0871 0.0809, 0.1025

    Table 2

    Table 2.  Selected Bond Lengths (Å) and Bond Angles (°) for 1 and 2
    DownLoad: CSV
    1
    Bond Dist. Bond Dist. Bond Dist.
    Mn(1)–O(1) 2.081(4) Mn(1)–O(3) 2.130(3) Mn(1)–N(1) 2.327(4)
    Mn(1)–N(2) 2.239(4) Mn(1)–N(3) 2.277(5) Mn(1)–N(4) 2.256(4)
    Mn(2)–O(6) 2.114(4) Mn(2)–O(8) 2.094(3) Mn(2)–N(5) 2.275(4)
    Mn(2)–N(6) 2.262(4) Mn(2)–N(7) 2.284(5) Mn(2)–N(8) 2.263(4)
    Angle (°) Angle (°) Angle (°)
    O(1)–Mn(1)–O(3) 90.36(14) O(1)–Mn(1)–N(2) 96.25(16) O(3)–Mn(1)–N(2) 92.44(13)
    O(1)–Mn(1)–N(4) 98.82(17) O(3)–Mn(1)–N(4) 100.30(14) N(2)–Mn(1)–N(4) 160.14(16)
    O(1)–Mn(1)–N(3) 171.45(15) O(3)–Mn(1)–N(3) 88.74(14) N(2)–Mn(1)–N(3) 92.28(15)
    N(4)–Mn(1)–N(3) 72.99(16) O(1)–Mn(1)–N(1) 92.91(15) O(3)–Mn(1)–N(1) 165.11(13)
    N(2)–Mn(1)–N(1) 72.77(13) N(4)–Mn(1)–N(1) 93.55(15) N(3)–Mn(1)–N(1) 90.12(14)
    O(8)–Mn(2)–O(6) 86.12(14) O(8)–Mn(2)–N(6) 166.37(15) O(6)–Mn(2)–N(6) 90.61(15)
    O(8)–Mn(2)–N(8) 99.56(14) O(6)–Mn(2)–N(8) 90.73(16) N(8)–Mn(2)–N(6) 93.71(14)
    O(8)–Mn(2)–N(5) 95.16(14) O(6)–Mn(2)–N(5) 105.42(16) N(5)–Mn(2)–N(6) 72.94(15)
    N(8)–Mn(2)–N(5) 158.85(16) O(8)–Mn(2)–N(7) 87.43(15) O(6)–Mn(2)–N(7) 161.09(15)
    N(7)–Mn(2)–N(6) 99.55(15) N(8)–Mn(2)–N(7) 72.84(17) N(5)–Mn(2)–N(7) 92.86(17)
    2
    Bond Dist. Bond Dist. Bond Dist.
    Mn(1)–O(2) 2.354(5) Mn(1)–O(3) 2.143(4) Mn(1)–O(4) 2.164(5)
    Mn(1)–O(8) 2.084(5) Mn(1)–N(1) 2.309(6) Mn(1)–N(2) 2.322(6)
    Mn(2)–O(1) 2.215(5) Mn(2)–O(2) 2.354(5) Mn(2)–O(6) 2.190(5)
    Mn(2)–O(7) 2.290(5) Mn(2)–N(3) 2.220(6) Mn(2)–N(4) 2.236(6)
    Angle (°) Angle (°) Angle (°)
    O(8)–Mn(1)–O(3) 96.2(2) O(8)–Mn(1)–O(4) 160.4(2) O(3)–Mn(1)–O(4) 94.11(18)
    O(8)–Mn(1)–N(1) 116.7(2) O(3)–Mn(1)–N(1) 85.1(2) O(4)–Mn(1)–N(1) 80.68(19)
    O(8)–Mn(1)–N(2) 89.2(2) O(3)–Mn(1)–N(2) 155.9(2) O(4)–Mn(1)–N(2) 88.10(19)
    N(1)–Mn(1)–N(2) 71.6(2) O(8)–Mn(1)–O(2) 80.77(19) O(3)–Mn(1)–O(2) 102.36(18)
    O(4)–Mn(1)–O(2) 80.82(17) N(1)–Mn(1)–O(2) 160.49(17) N(2)–Mn(1)–O(2) 101.7(2)
    O(6)–Mn(2)–O(1) 91.51(19) O(6)–Mn(2)–N(3) 105.0(2) O(1)–Mn(2)–N(3) 84.22(19)
    O(6)–Mn(2)–N(4) 137.65(19) O(1)–Mn(2)–N(4) 129.5(2) N(4)–Mn(2)–N(3) 73.7(2)
    O(6)–Mn(2)–O(7) 58.50(17) O(7)–Mn(2)–O(1) 144.82(19) O(7)–Mn(2)–N(3) 118.9(2)
    O(7)–Mn(2)–N(4) 84.5(2) O(6)–Mn(2)–O(2) 97.06(18) O(1)–Mn(2)–O(2) 57.75(16)
    N(3)–Mn(2)–O(2) 136.45(19) N(4)–Mn(2)–O(2) 112.9(2) O(7)–Mn(2)–O(2) 104.61(18)
    Symmetry codes: ⅰ: x–1, y, z; ⅱ: –x, –y+1, –z+1

    Table 3

    Table 3.  Geometrical Parameters of Hydrogen Bonds and π∙∙∙π Interactions for 1 and 2
    DownLoad: CSV
    D–H∙∙∙A d(D–H)/Å d(H∙∙∙A)/Å d(D∙∙∙A)/Å ∠DHA/º
    O(10)–H(1W)∙∙∙O(9) 0.85 1.81 2.663(7) 178
    O(10)–H(2W)∙∙∙O(11) 0.85 2.23 2.862(7) 131
    O(11)–H(3W)∙∙∙O(2) 0.85 1.89 2.743(6) 179
    O(12)–H(5W)∙∙∙O(4) 0.85 1.96 2.811(7) 179
    O(12)–H(6W)∙∙∙O(11) 0.84 2.14 2.943(7) 160
    Symmetry code: i: x, y+1, z
    Ring(i)→ring(j) d(Cg(i))∙∙∙Cg(j))/Å d(Cg(i))→ring(j))/Å d(Cg(ji))→ring(i))/Å Dihedral angle/º
    1
    Ring(1)→Ring(2) 3.6305(3) 3.4208(3) 3.4587(3) 1.104(3)
    Ring(3)→Ring(4) 3.6383(3) 3.3811(3) 3.4257(3) 1.225(3)
    Ring(5)→Ring(4) 3.4996(3) 3.4735(3) 3.4343(3) 0.496(3)
    Cg(1): N(2)C(24)C(25)C(26)C(27)C(28); Cg(2): N(5)C(48)C(49)C(50)C(51)C(52);
    Cg
    Cg(3): N(6)C(48)C(49)C(50)C(51)C(52); N(6)C(48)C(49)C(50)C(51)C(52); Cg(4): C(44)C(45)C(46)C(47)C(48)C(49);
    z+1; ii: x–1, y, z
    Cg(5): C(20)C(21)C(22)C(23)C(24)C(25). Symmetry operation: i: –x+1, –y, –z+1; ii: –x+2, –y+1, –z+1
    2
    Ring(1)→Ring(2) 3.6605(5) 3.5000(5) 3.3385(5) 1.501(5)
    Ring(3)→Ring(4) 3.5631(5) 3.3863(5) 3.3807(5) 1.125(5)
    Ring(3)→Ring(5) 3.6743(5) 3.3785(5) 3.3785(5) 1.444(5)
    Cg(1): N(1)C(17)C(18)C(19)C(20)C(21); Cg(2): N(4)C(36)C(37)C(38)C(39)C(40);
    Cg(3): C(32)C(33)C(34)C(35)C(36)C(37); Cg(4): N(3)C(29)C(30)C(31)C(32)C(33);
    Cg(5): C(32)C(33)C(34)C(35)C(36)C(37). Symmetry operation: i: –x, –y+1, –z+1; ii: –x–1, –y+2, –z+1

    X-ray crystallography analysis reveals that compound 1 crystallizes in triclinic $ P\overline 1 $ space group. Compound 1 possesses a discrete dimeric structure. As shown in Fig. 1, the asymmetric unit of 1 bears two crystallographically unique Mn(Ⅱ) atoms (Mn(1) and Mn(2)), one μ-L4– ligand, four phen moieties, and four lattice water molecules. Both Mn(1) and Mn(2) atoms are six-coordinated and feature distorted octahedral {MnN4O2} geometries, filled by two carboxylate O atoms of the μ-L4– ligand and four N atoms of two phen moieties. The Mn–O and Mn–N bond distances are 2.081(4)~2.130(3) and 2.239(4)~2.327(4) Å, respectively; these are within the normal ranges observed in related Mn(Ⅱ) compounds[16, 18, 26]. In 1, the L4– ligand adopts the coordination mode Ⅰ (Scheme 1) with all carboxylate groups being monodentate. In the L4– ligand, a dihedral angle (between two aromatic rings) and a C–Oether–C angle are 84.20 and 117.65°, respectively. The μ-L4– ligand connects Mn1 and Mn2 atoms to give a Mn2 molecular unit having a Mn∙∙∙Mn distance of 9.655(3) Å (Fig. 1). The discrete dimeric units of 1 are interlinked by the O–H···O hydrogen bonds and π∙∙∙π packing interactions to generate a 3D supramolecular framework (Fig. 2 and Table 3).

    Figure 1

    Figure 1.  Coordination environments of the Mn(Ⅱ) atoms in compound 1. The lattice water molecules and hydrogen atoms are omitted for clarity

    Scheme 1

    Scheme 1.  Coordination modes of the L4– ligands in compounds 1 and 2

    Figure 2

    Figure 2.  Perspective view of the 3D supramolecular framework along the bc plane in 1 (Blue dashed lines present the H-bonds)

    The asymmetric unit of compound 2 contains two crystallographically unique Mn(Ⅱ) atoms, one μ5-L4– ligand, two phen moieties, and one lattice water molecule. As depicted in Fig. 3, six-coordinate Mn(1) atom exhibits a distorted octahedral {MnN2O4} environment, which is occupied by four carboxylate O atoms of three L4– blocks and two N atoms of one phen moiety. The Mn(2) center is also sixcoordinated to form a distorted octahedral {MnN2O4} geometry. It is completed by four carboxylate O atoms from two L4– blocks and two N atoms of one phen moiety. The bond lengths of Mn–O are in the 2.084(5)~2.354(5) Å range, while the Mn–N bonds are 2.220(6)~2.322(6) Å, being comparable to those found in some reported Mn(Ⅱ) compounds[16, 18, 26]. In 2, the L4– block acts as a μ5-linker (mode Ⅱ, Scheme 1), in which four carboxylate groups adopt monodentate, bidentate, μ-bridging bidentate and μ-bridging tridentate modes. Besides, μ5-L4– ligand is considerably bent showing a dihedral angle of 86.51° (between two aromatic rings) and the C–Oether–C angle of 115.06°. The four adjacent Mn(Ⅱ) centers are bridged by means of four COO groups from two μ5-L4– blocks, generating a tetramanganese(Ⅱ) subunit (Fig. 4). These Mn4 subunits are further interlinked by the remaining carboxylate functionalities of the μ5-L4– blocks to furnish a 1D chain (Fig. 5). The neighboring chains are assembled into a 2D sheet through the π∙∙∙π packing interaction (Table 3 and Fig. 6).

    Figure 3

    Figure 3.  Coordination environments of the Mn(Ⅱ) atoms in compound 2. The hydrogen atoms are omitted for clarity (Symmetry codes: ⅰ: x–1, y, z; ⅱ: –x, –y+1, –z+1)

    Figure 4

    Figure 4.  Tetramanganese(Ⅱ) subunit (Symmetry code: ⅰ: –x, –y+1, –z+1)

    Figure 5

    Figure 5.  View of 1D metal-organic chain along the ac plane in 2. The phen ligands are omitted for clarity

    Figure 6

    Figure 6.  View of 2D metal-organic sheet along the ab plane in 2 (Green dashed lines present the π∙∙∙π interactions)

    The as-synthesized, microcrystalline samples of 1 and 2 were used to collect their PXRD (powder X-ray diffraction) patterns at room temperature (Figs. 7 and 8). The obtained data indicate that the experimental diffractograms are in good agreement with the plots simulated from the single-crystal X-ray diffraction data, thus affirming a phase purity of the analyzed samples of 1 and 2.

    Figure 7

    Figure 7.  PXRD patterns of compound 1 at room temperature. Black patterns correspond to the experimental data obtained using the as-synthesized bulk samples. Red patterns were simulated from the single crystal X-ray data

    Figure 8

    Figure 8.  PXRD patterns of compound 2 at room temperature. Black patterns correspond to the experimental data obtained using the as-synthesized bulk samples. Red patterns were simulated from the single crystal X-ray data

    To determine the thermal stability of compounds 1 and 2, their thermal behaviors were investigated under nitrogen atmosphere by thermogravimetric analysis (TGA). As shown in Fig. 9, compound 1 lost its four lattice water molecules in the 315~364 K range (exptl, 5.5%; calcd. 5.7%), followed by the decomposition at 563 K. The TGA curve of 2 reveals that one lattice water molecule is released between 353 and 382 K (exptl, 2.3%; calcd. 2.2%), and the dehydrated solid begins to decompose at 604 K. MnO is expected as final decomposition products of 1 and 2.

    Figure 9

    Figure 9.  TGA curves of compounds 1 and 2

    Variable-temperature magnetic susceptibility studies were carried out on powder samples of Mn(Ⅱ) derivative 2 in the 2~300 K temperature range. As shown in Fig. 10, χMT of 8.82 cm3⋅mol–1⋅K at room temperature is close to 8.76 cm3⋅mol–1⋅K, a value expected for two magnetically isolated Mn(Ⅱ) centers (SMn = 5/2, g = 2.0). On lowering the temperature, χMT slowly decreases until 30 K, followed by a sharp decrease to 5.73 cm3⋅mol–1⋅K at 2.0 K (Fig. 10). In the 2~300 K range, the magnetic susceptibility can be fitted to the Curie-Weiss law with C = 9.41 cm3⋅mol–1⋅K and θ = –16.2 K. A negative θ value points out an antiferromagnetic coupling between the neighboring Mn(Ⅱ) centers[30, 31]. Because of the long separation between the adjacent Mn4 subunits, only the coupling interactions within the tetra-manganese (Ⅱ) blocks were considered. In the structure of Mn4 unit (Fig. 4), there are two types of magnetic exchange pathways within the tetranuclear units, namely, the μ-O atoms from the carboxylate groups and μ-carboxylate bridges.

    Figure 10

    Figure 10.  Temperature dependence of χMT (o) and 1/χM(□) vs. T for compound 2. The red straight line shows the Curie-Weiss fitting

    We applied unexplored 2,3,3΄,4΄-diphenyl ether tetracarboxylic acid (H4L) as a versatile and multifunctional building block for the synthesis of two Mn(Ⅱ) coordination compounds at 120 and 160 ℃, respectively. Compound 1 discloses a discrete dimeric structure, which is assembled to a 3D supramolecular framework through O–H∙∙∙O hydrogen bond and π∙∙∙π packing interactions. Compound 2 has a chain structure. Structural differences between two compounds are attributed to the different reaction temperature. Magnetic studies for compound 2 demonstrate an antiferromagnetic coupling between the adjacent Mn(Ⅱ) centers. This work demonstrates that such ether-bridged tetracarboxylic acid can be used as a versatile multifunctional building block toward the generation of new coordination compounds and the hydrothermal reaction temperature has a significant effect on the structures of the coordination compounds.


    1. [1]

      Fu, H. R.; Zhao, Y.; Zhou, Z.; Yang, X. G.; Ma, L. F. Neutral ligand TIPA-based two 2D metal-organic frameworks: ultrahigh selectivity of C2H2/CH4 and efficient sensing and sorption of Cr(Ⅵ). Dalton Trans. 2018, 47, 3725–3732. doi: 10.1039/C8DT00206A

    2. [2]

      Zhu, J.; Usov, P. M.; Xu, W. Q.; Celis-Salazar, P. J.; Lin, S. Y.; Kessinger, M. C.; Landaverde-Alvarado, C.; Cai, M.; May, A. M.; Slebodnick, C.; Zhu, D. R.; Senanayake, S. D.; Morris, A. J. A new class of metal-cyclam-based zirconium metal-organic frameworks for CO2 adsorption and chemical fixation. J. Am. Chem. Soc. 2018, 140, 993–1003. doi: 10.1021/jacs.7b10643

    3. [3]

      Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430. doi: 10.1039/C7CS00153C

    4. [4]

      Zhao, J.; Wang, Y. N.; Dong, W. W.; Wu, Y. P.; Li, D. S.; Zhang, Q. C. A robust luminescent Tb(Ⅲ)-MOF with Lewis basic pyridyl sites for the highly sensitive detection of metal ions and small molecules. Inorg. Chem. 2016, 55, 3265–3271. doi: 10.1021/acs.inorgchem.5b02294

    5. [5]

      Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162. doi: 10.1021/cr200101d

    6. [6]

      Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Arol, A. S.; Kirillova, M. V.; Kirillov, A, M. Metal-organic architectures assembled from multifunctional polycarboxylate: hydrothermal self-assembly, structures, and catalytic activity in alkane oxidation. Inorg. Chem. 2019, 58, 2403–2412. doi: 10.1021/acs.inorgchem.8b02926

    7. [7]

      Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Nesterov, D. S.; Kirillova, M. V.; Kirillov, A, M. Cobalt(Ⅱ) coordination polymers assembled from unexplored pyridine-carboxylic acids: structural diversity and catalytic oxidation of alcohols. Inorg. Chem. 2019, 58, 5875–5885. doi: 10.1021/acs.inorgchem.9b00242

    8. [8]

      Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. J. Am. Chem. Soc. 2009, 131, 13625–13627. doi: 10.1021/ja904156s

    9. [9]

      Minguez, E. G.; Coronado, E. Magnetic functionalities in MOFs: from the framework to the pore. Chem. Soc. Rev. 2018, 47, 533–557. doi: 10.1039/C7CS00653E

    10. [10]

      Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697. doi: 10.1038/nchem.2718

    11. [11]

      Chen, W. M.; Meng, X. L.; Zhuang, G. L.; Wang, Z.; Kurmoo, M.; Zhao, Q. Q.; Wang, X. P.; Shan, B. R.; Tung, C. H.; Sun, D. A superior fluorescent sensor for Al3+ and UO22+ based on a Co(Ⅱ) metal-organic framework with exposed pyrimidyl Lewis base sites. J. Mater. Chem. A 2017, 5, 13079–13085. doi: 10.1039/C7TA01546A

    12. [12]

      Mao, N. N.; Hu, P.; Yu, F.; Chen, X.; Zhuang, G. L.; Zhang, T. L.; Li, B. A series of transition metal coordination polymers based on a rigid bi-functional carboxylate-triazolate tecton. CrystEngComm. 2017, 19, 4586–4594. doi: 10.1039/C7CE00808B

    13. [13]

      Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Gas adsorption sites in a large-pore metal-organic framework. Science 2005, 309, 1350–1354. doi: 10.1126/science.1113247

    14. [14]

      Hou, L.; Lin, Y. Y.; Chen, X. M. Porous metal-organic framework based on mu-oxo tetrazinc clusters: sorption and guest-dependent luminescent properties. Inorg. Chem. 2008, 47, 1346–1351. doi: 10.1021/ic702085x

    15. [15]

      Su, J.; Yao, L. D.; Zhao, M.; Wang, H.; Zhang, Q.; Cheng, L. J.; Zhang, J.; Zhang, S. Y.; Wu, J. Y.; Tian, Y. P. Structural induction effect of a zwitterion pyridiniumolate for metal-organic frameworks. Inorg. Chem. 2015, 54, 6169–6175. doi: 10.1021/acs.inorgchem.5b00180

    16. [16]

      Gu, J. Z.; Gao, Z. Q.; Tang, Y. pH and auxiliary ligand influence on the structural variations of 5(2΄-carboxylphenyl) nicotate coordination polymers. Cryst. Growth Des. 2012, 12, 3312–3323. doi: 10.1021/cg300442b

    17. [17]

      Zou, X. Z.; Wu, J.; Gu, J. Z.; Zhao, N.; Feng, A. S.; Li, Y. Synthesis of two nickel coordination compounds based on a rigid linear tricarboxylic acid. Chin. J. Inorg. Chem. 2019, 35, 1705–1711.

    18. [18]

      Gu, J. Z.; Cui, Y. H.; Liang, X. X.; Wu, J.; Lv, D. Y.; Kirillov, A. M. Structurally distinct metal-organicand H-bonded networks derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: coordination and template effect of 4, 4΄-bipyridine. Cryst. Growth Des. 2016, 16, 4658–4670. doi: 10.1021/acs.cgd.6b00735

    19. [19]

      Wang, H. L.; Zhang, D. P.; Sun, D. F.; Chen, Y. T.; Wang, K.; Ni, Z. H.; Tian, L. J.; Jiang, J. Z. Diverse Ni(Ⅱ) MOFs constructed from asymmetric semi-rigid V-shaped multicarboxylate ligands: structures and magnetic properties. CrystEngComm. 2010, 12, 1096−1102. doi: 10.1039/B917659D

    20. [20]

      Li, L.; Li, C. X.; Ren, Y. L.; Song, M.; Ma, Y.; Huang, R. D. Novel luminescent metal-organic frameworks based on rigid carboxylate ligands for highly selective sensing of Fe3+ ions. CrystEngComm. 2016, 18, 7787−7795. doi: 10.1039/C6CE01514J

    21. [21]

      Liang, Y. T.; Yang, G. P.; Liu, B.; Yan, Y. T.; Xi, Z. P.; Wang, Y. Y. Four super water-stable lanthanide-organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe3+. Dalton Trans. 2015, 44, 13325−13330. doi: 10.1039/C5DT01421B

    22. [22]

      Gu, W. J.; Gu, J. Z. Syntheses, crystal structures and magnetic properties of 1D and 2D cobalt(Ⅱ) coordination polymers constructed from semirigid tricarboxylic acid. Chin. J. Inorg. Chem. 2017, 33, 227–236.

    23. [23]

      Shao, Y. L.; Cui, Y. H.; Gu, J. Z.; Wu, J.; Wang, Y. W.; Kirillov, A. M. Exploring biphenyl-2, 4, 4΄-tricarboxylic acid as a flexible building block for the hydrothermal self-assembly of diverse metal-organic and supramolecular networks. CrystEngComm. 2016, 18, 765–778. doi: 10.1039/C5CE02254A

    24. [24]

      Gu, J. Z.; Liang, X. X.; Cui, Y. H.; Wu, J.; Kirillov, A. M. Exploring 4-(3-carboxyphenyl)picolinic acid as a semirigid building block for the hydrothermal self-assembly of diverse metal-organic and supramolecular networks. CrystEngComm. 2017, 19, 117–128. doi: 10.1039/C6CE02115H

    25. [25]

      Gu, J. Z.; Wen, M.; Liang, X. X.; Shi, Z. F.; Kirillova, M. V.; Kirillov, A. M. Multifunctional aromatic carboxylic acids as versatile building blocks for hydrothermal design of coordination polymers. Crystals 2018, 8, 83. doi: 10.3390/cryst8020083

    26. [26]

      Gu, J. Z.; Liang, X. X.; Cai, Y.; Wu, J.; Shi, Z. F.; Kirillov, A. M. Hydrothermal assembly, structures, topologies, luminescence, and magnetism of a novel series of coordination polymers driven by a trifunctional nicotinic acid building block. Dalton Trans. 2017, 46, 10908–10925. doi: 10.1039/C7DT01742A

    27. [27]

      Sheldrick, G. M. SHELXS 97, Program for Solution of Crystal Structure. University of Göttingen, Germany 1997.

    28. [28]

      Sheldrick, G. M. SHELXL 97, Program for Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    29. [29]

      Van de Sluis, P.; Spek, A. L. Bypass-an effective merhve method for the refinement of crystal-structures containing disordered solvent regions. Acta Crystallogr., Sect. A 1990, 46, 194–201. doi: 10.1107/S0108767389011189

    30. [30]

      Feng, Y. Q.; Ding, C. H.; Fan, H. T.; Zhong, Z. G.; Qiu, D. F.; Shi, H. Z. Employing a new 12-connected topological open-framework copper borovanadate as an effective heterogeneous catalyst for oxidation of benzylalkanes. Dalton Trans. 2015, 44, 18731–18736. doi: 10.1039/C5DT03425F

    31. [31]

      Feng, Y. Q.; Li, M.; Fan, H. T.; Huang, Q. Z.; Qiu, D. F.; Shi, H, Z. A novel open-framework copper borophosphate containing 1-D borophosphate anion with 10-MR windows and 12-MR channels. Dalton Trans. 2015, 44, 894–897. doi: 10.1039/C4DT02840F

  • Figure 1  Coordination environments of the Mn(Ⅱ) atoms in compound 1. The lattice water molecules and hydrogen atoms are omitted for clarity

    Scheme 1  Coordination modes of the L4– ligands in compounds 1 and 2

    Figure 2  Perspective view of the 3D supramolecular framework along the bc plane in 1 (Blue dashed lines present the H-bonds)

    Figure 3  Coordination environments of the Mn(Ⅱ) atoms in compound 2. The hydrogen atoms are omitted for clarity (Symmetry codes: ⅰ: x–1, y, z; ⅱ: –x, –y+1, –z+1)

    Figure 4  Tetramanganese(Ⅱ) subunit (Symmetry code: ⅰ: –x, –y+1, –z+1)

    Figure 5  View of 1D metal-organic chain along the ac plane in 2. The phen ligands are omitted for clarity

    Figure 6  View of 2D metal-organic sheet along the ab plane in 2 (Green dashed lines present the π∙∙∙π interactions)

    Figure 7  PXRD patterns of compound 1 at room temperature. Black patterns correspond to the experimental data obtained using the as-synthesized bulk samples. Red patterns were simulated from the single crystal X-ray data

    Figure 8  PXRD patterns of compound 2 at room temperature. Black patterns correspond to the experimental data obtained using the as-synthesized bulk samples. Red patterns were simulated from the single crystal X-ray data

    Figure 9  TGA curves of compounds 1 and 2

    Figure 10  Temperature dependence of χMT (o) and 1/χM(□) vs. T for compound 2. The red straight line shows the Curie-Weiss fitting

    Table 1.  Crystal Data and Structure Refinement for 1 and 2

    Compound 1 2
    Formula C64H46Mn2N8O13 C40H24Mn2N4O10
    Formula weight 1244.97 830.52
    Crystal system Triclinic Monoclinic
    Space group P$ \overline 1 $ P21/c
    a (Å) 12.0415(8) 11.7387(15)
    b (Å) 14.2876(11) 11.6216(15)
    c (Å) 16.6562(12) 24.146(3)
    α (°) 96.645(6) 90
    β (°) 90.226(6) 90.651(11)
    γ (°) 98.319(6) 90
    V3) 2815.8(4) 3293.8(7)
    Z 2 4
    Dc (g/cm3) 1.447 1.638
    µ (mm–1) 0.522 0.836
    Independent reflections 9941 5808
    Rint 0.0718 0.1065
    F(000) 1260 1648
    S 0.990 0.926
    R, wR (I > 2σ(I)) 0.0722, 0.0871 0.0809, 0.1025
    下载: 导出CSV

    Table 2.  Selected Bond Lengths (Å) and Bond Angles (°) for 1 and 2

    1
    Bond Dist. Bond Dist. Bond Dist.
    Mn(1)–O(1) 2.081(4) Mn(1)–O(3) 2.130(3) Mn(1)–N(1) 2.327(4)
    Mn(1)–N(2) 2.239(4) Mn(1)–N(3) 2.277(5) Mn(1)–N(4) 2.256(4)
    Mn(2)–O(6) 2.114(4) Mn(2)–O(8) 2.094(3) Mn(2)–N(5) 2.275(4)
    Mn(2)–N(6) 2.262(4) Mn(2)–N(7) 2.284(5) Mn(2)–N(8) 2.263(4)
    Angle (°) Angle (°) Angle (°)
    O(1)–Mn(1)–O(3) 90.36(14) O(1)–Mn(1)–N(2) 96.25(16) O(3)–Mn(1)–N(2) 92.44(13)
    O(1)–Mn(1)–N(4) 98.82(17) O(3)–Mn(1)–N(4) 100.30(14) N(2)–Mn(1)–N(4) 160.14(16)
    O(1)–Mn(1)–N(3) 171.45(15) O(3)–Mn(1)–N(3) 88.74(14) N(2)–Mn(1)–N(3) 92.28(15)
    N(4)–Mn(1)–N(3) 72.99(16) O(1)–Mn(1)–N(1) 92.91(15) O(3)–Mn(1)–N(1) 165.11(13)
    N(2)–Mn(1)–N(1) 72.77(13) N(4)–Mn(1)–N(1) 93.55(15) N(3)–Mn(1)–N(1) 90.12(14)
    O(8)–Mn(2)–O(6) 86.12(14) O(8)–Mn(2)–N(6) 166.37(15) O(6)–Mn(2)–N(6) 90.61(15)
    O(8)–Mn(2)–N(8) 99.56(14) O(6)–Mn(2)–N(8) 90.73(16) N(8)–Mn(2)–N(6) 93.71(14)
    O(8)–Mn(2)–N(5) 95.16(14) O(6)–Mn(2)–N(5) 105.42(16) N(5)–Mn(2)–N(6) 72.94(15)
    N(8)–Mn(2)–N(5) 158.85(16) O(8)–Mn(2)–N(7) 87.43(15) O(6)–Mn(2)–N(7) 161.09(15)
    N(7)–Mn(2)–N(6) 99.55(15) N(8)–Mn(2)–N(7) 72.84(17) N(5)–Mn(2)–N(7) 92.86(17)
    2
    Bond Dist. Bond Dist. Bond Dist.
    Mn(1)–O(2) 2.354(5) Mn(1)–O(3) 2.143(4) Mn(1)–O(4) 2.164(5)
    Mn(1)–O(8) 2.084(5) Mn(1)–N(1) 2.309(6) Mn(1)–N(2) 2.322(6)
    Mn(2)–O(1) 2.215(5) Mn(2)–O(2) 2.354(5) Mn(2)–O(6) 2.190(5)
    Mn(2)–O(7) 2.290(5) Mn(2)–N(3) 2.220(6) Mn(2)–N(4) 2.236(6)
    Angle (°) Angle (°) Angle (°)
    O(8)–Mn(1)–O(3) 96.2(2) O(8)–Mn(1)–O(4) 160.4(2) O(3)–Mn(1)–O(4) 94.11(18)
    O(8)–Mn(1)–N(1) 116.7(2) O(3)–Mn(1)–N(1) 85.1(2) O(4)–Mn(1)–N(1) 80.68(19)
    O(8)–Mn(1)–N(2) 89.2(2) O(3)–Mn(1)–N(2) 155.9(2) O(4)–Mn(1)–N(2) 88.10(19)
    N(1)–Mn(1)–N(2) 71.6(2) O(8)–Mn(1)–O(2) 80.77(19) O(3)–Mn(1)–O(2) 102.36(18)
    O(4)–Mn(1)–O(2) 80.82(17) N(1)–Mn(1)–O(2) 160.49(17) N(2)–Mn(1)–O(2) 101.7(2)
    O(6)–Mn(2)–O(1) 91.51(19) O(6)–Mn(2)–N(3) 105.0(2) O(1)–Mn(2)–N(3) 84.22(19)
    O(6)–Mn(2)–N(4) 137.65(19) O(1)–Mn(2)–N(4) 129.5(2) N(4)–Mn(2)–N(3) 73.7(2)
    O(6)–Mn(2)–O(7) 58.50(17) O(7)–Mn(2)–O(1) 144.82(19) O(7)–Mn(2)–N(3) 118.9(2)
    O(7)–Mn(2)–N(4) 84.5(2) O(6)–Mn(2)–O(2) 97.06(18) O(1)–Mn(2)–O(2) 57.75(16)
    N(3)–Mn(2)–O(2) 136.45(19) N(4)–Mn(2)–O(2) 112.9(2) O(7)–Mn(2)–O(2) 104.61(18)
    Symmetry codes: ⅰ: x–1, y, z; ⅱ: –x, –y+1, –z+1
    下载: 导出CSV

    Table 3.  Geometrical Parameters of Hydrogen Bonds and π∙∙∙π Interactions for 1 and 2

    D–H∙∙∙A d(D–H)/Å d(H∙∙∙A)/Å d(D∙∙∙A)/Å ∠DHA/º
    O(10)–H(1W)∙∙∙O(9) 0.85 1.81 2.663(7) 178
    O(10)–H(2W)∙∙∙O(11) 0.85 2.23 2.862(7) 131
    O(11)–H(3W)∙∙∙O(2) 0.85 1.89 2.743(6) 179
    O(12)–H(5W)∙∙∙O(4) 0.85 1.96 2.811(7) 179
    O(12)–H(6W)∙∙∙O(11) 0.84 2.14 2.943(7) 160
    Symmetry code: i: x, y+1, z
    Ring(i)→ring(j) d(Cg(i))∙∙∙Cg(j))/Å d(Cg(i))→ring(j))/Å d(Cg(ji))→ring(i))/Å Dihedral angle/º
    1
    Ring(1)→Ring(2) 3.6305(3) 3.4208(3) 3.4587(3) 1.104(3)
    Ring(3)→Ring(4) 3.6383(3) 3.3811(3) 3.4257(3) 1.225(3)
    Ring(5)→Ring(4) 3.4996(3) 3.4735(3) 3.4343(3) 0.496(3)
    Cg(1): N(2)C(24)C(25)C(26)C(27)C(28); Cg(2): N(5)C(48)C(49)C(50)C(51)C(52);
    Cg
    Cg(3): N(6)C(48)C(49)C(50)C(51)C(52); N(6)C(48)C(49)C(50)C(51)C(52); Cg(4): C(44)C(45)C(46)C(47)C(48)C(49);
    z+1; ii: x–1, y, z
    Cg(5): C(20)C(21)C(22)C(23)C(24)C(25). Symmetry operation: i: –x+1, –y, –z+1; ii: –x+2, –y+1, –z+1
    2
    Ring(1)→Ring(2) 3.6605(5) 3.5000(5) 3.3385(5) 1.501(5)
    Ring(3)→Ring(4) 3.5631(5) 3.3863(5) 3.3807(5) 1.125(5)
    Ring(3)→Ring(5) 3.6743(5) 3.3785(5) 3.3785(5) 1.444(5)
    Cg(1): N(1)C(17)C(18)C(19)C(20)C(21); Cg(2): N(4)C(36)C(37)C(38)C(39)C(40);
    Cg(3): C(32)C(33)C(34)C(35)C(36)C(37); Cg(4): N(3)C(29)C(30)C(31)C(32)C(33);
    Cg(5): C(32)C(33)C(34)C(35)C(36)C(37). Symmetry operation: i: –x, –y+1, –z+1; ii: –x–1, –y+2, –z+1
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  659
  • HTML全文浏览量:  26
文章相关
  • 发布日期:  2020-04-01
  • 收稿日期:  2019-06-01
  • 接受日期:  2019-10-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章