Manganese Oxide (MnO) and Cadmium Dioxide (CdO2) Attached to Carbon Nanotube (8, 0) as Anodes of Metal-ion Batteries: a DFT Study

Shamshirband SHAHABODDIN Baghban ALIREZA Nabipour NARJES Najafi MEYSAM

Citation:  Shamshirband SHAHABODDIN, Baghban ALIREZA, Nabipour NARJES, Najafi MEYSAM. Manganese Oxide (MnO) and Cadmium Dioxide (CdO2) Attached to Carbon Nanotube (8, 0) as Anodes of Metal-ion Batteries: a DFT Study[J]. Chinese Journal of Structural Chemistry, 2020, 39(3): 415-420. doi: 10.14102/j.cnki.0254-5861.2011-2463 shu

Manganese Oxide (MnO) and Cadmium Dioxide (CdO2) Attached to Carbon Nanotube (8, 0) as Anodes of Metal-ion Batteries: a DFT Study

English

  • Nanostructures have increased the electrical conductance and improved the capacity of metal-ion battery[1-5]. The nanostructures have high area surfaces and beneficent electrical properties to use as electrode in metal-ion battery. The metal dioxides have been employed in electrochemistry and they have high capacity and performance than graphite[6-9]. Researchers have described that nanotubes have great capacity as anode electrodes in metal-ion batteries[10-13].

    The experimental researchers have demonstrated the carbon nanotubes have high application in industry due to excellent thermal, electrical and mechanical properties. The experimental researchers have used the composite structures of carbon nanotubes with metal oxides and metal dioxides in order to exploit the applications of carbon nanotubes[14-16].

    The experimental researchers have considered the metal oxides and metal dioxides for energy storage devices due to particular physical and chemical properties. The experimental researchers have confirmed that metal oxides and metal dioxides have high electrical conductivities used in metal-ion batteries[17-19].

    The experimental researchers have assembled the framework of metal oxides and metal dioxides on carbon nanotubes and these frameworks increased the heat conduction and surface. The experimental researchers confirmed that these frameworks enhanced the electron and ion transport from within and outside of carbon nanotubes which have applications in metal-ion batteries[20-22].

    The experimental researchers have assayed to use layer-by-layer assembly to aid the growth of metal oxides and metal dioxides on carbon nanotubes. They have applied gel polymers to enforce the addition of various metals to create the composites of metal oxides and metal dioxides and carbon nanotubes[23-26].

    In this study, potential of carbon nanotube (8, 0) and attached metal oxides (manganese oxide (MnO) and cadmium dioxide (CdO2)) to carbon nanotube (8, 0) as materials of anode electrodes in metalion batteries are investigated. The main aims of this study are (a) to compare the potential of MnO and CdO2 as anode electrodes in metal-ion batteries and (c) to compare the performance of LIB and KIB.

    Geometries of CNT (8, 0), MnO-CNT (8, 0) and CdO2-CNT (8, 0) are calculated via DFT/M06-2X and 6-311+G (2d, 2p) in GAMESS package. The frequency calculations of complexes (MnO-CNT (8, 0) and CdO2-CNT (8, 0)) are done to confirm these optimized complexes are real minima structures[27-32]. The Gibbs free energies of adsorption of metal oxides (MnO and CdO2) on CNT (8, 0) are calculated as follows:

    $ \begin{aligned} & G_{\text {ad }}=G(\text { metal oxide-CNT }(8,0))- \\ & G(\text { metal oxide })-G(\operatorname{CNT}(8,0)) \end{aligned} $

    (1)

    The geometries of MnO-CNT (8, 0) and CdO2-CNT (8, 0) with Li and K are calculated by DFT/M06-2X and 6-311+G (2d, 2p). The Gibbs free energies of adsorption of metals (Li and K) on surfaces of MnO-CNT (8, 0) and CdO2-CNT (8, 0) are calculated as below:

    $ G_{\mathrm{ad}}=G\left(\mathrm{Li}-\mathrm{CdO}_2-\mathrm{CNT}(8,0)\right)-G(\mathrm{Li})-G\left(\mathrm{CdO}_2-\mathrm{CNT}(8,0)\right) $

    (2)

    $ G_{\mathrm{ad}}=G\left(\mathrm{~K}-\mathrm{CdO}_2-\mathrm{CNT}(8,0)\right)-G(\mathrm{~K})-G\left(\mathrm{CdO}_2-\mathrm{CNT}(8,0)\right) $

    (3)

    $ G_{\mathrm{ad}}=G(\mathrm{Li}-\mathrm{MnO}-\mathrm{CNT}(8,0))-G(\mathrm{Li})-G(\mathrm{MnO}-\mathrm{CNT}(8,0)) $

    (4)

    $ G_{\mathrm{ad}}=G(\mathrm{~K}-\mathrm{MnO}-\mathrm{CNT}(8,0))-G(K)-G(\mathrm{MnO}-\mathrm{CNT}(8,0)) $

    (5)

    The reactions in anode of Li-ion and K-ion batteries are:

    $ \mathrm{Li}-\mathrm{CdO}_2-\mathrm{CNT}(8,0) \leftrightarrow \mathrm{Li}^{+}-\mathrm{CdO}_2-\mathrm{CNT}(8,0)+e^{-} $

    (6)

    $ \mathrm{K}-\mathrm{CdO}_2-\mathrm{CNT}(8,0) \leftrightarrow \mathrm{K}^{+}-\mathrm{CdO}_2-\mathrm{CNT}(8,0)+e^{-} $

    (7)

    $ \mathrm{Li}-\mathrm{MnO}-\mathrm{CNT}(8,0) \leftrightarrow \mathrm{Li}^{+}-\mathrm{MnO}-\mathrm{CNT}(8,0)+e^{-} $

    (8)

    $ \mathrm{K}-\mathrm{MnO}-\mathrm{CNT}(8,0) \leftrightarrow \mathrm{K}^{+}-\mathrm{MnO}-\mathrm{CNT}(8,0)+e^{-} $

    (9)

    The reactions in cathode of Li-ion and K-ion batteries are: (Li+ + e ↔ Li and K+ + e ↔ K). The thorough reaction of Li-ion and K-ion batteries are:

    $ \mathrm{Li}^{+}+\mathrm{Li}-\mathrm{CdO}_2-\mathrm{CNT}(8,0) \leftrightarrow \mathrm{Li}^{+}-\mathrm{CdO}_2 \text {-CNT }(8,0)+\mathrm{Li}+\Delta G_{\text {cell }} $

    (10)

    $ \mathrm{K}^{+}+\mathrm{K}-\mathrm{CdO}_2-\mathrm{CNT}(8,0) \leftrightarrow \mathrm{K}^{+}-\mathrm{CdO}_2-\mathrm{CNT}(8,0)+\mathrm{K}+\Delta G_{\text {cell }} $

    (11)

    $ \mathrm{Li}^{+}+\mathrm{Li}-\mathrm{MnO}-\mathrm{CNT}(8,0) \leftrightarrow \mathrm{Li}^{+}-\mathrm{MnO}-\mathrm{CNT}(8,0)+\mathrm{Li}+\Delta G_{\text {cell }} $

    (12)

    $ \mathrm{K}^{+}+\mathrm{K}-\mathrm{MnO}-\mathrm{CNT}(8,0) \leftrightarrow \mathrm{K}^{+}-\mathrm{MnO}-\mathrm{CNT}(8,0)+\mathrm{K}+\Delta G_{\text {cell }} $

    (13)

    In metal-ion battery, cell voltage (Vcell) is: Vcell = − ΔGcell/zF, where F as Faraday constant is 96, 500 C/mol, z is the charge on Li+ and K+ ions in electrolyte and ΔGcell was the Gibbs free energy change of studied cells[33-37]. The band gap energy (EBG) of studied nanostructures is ELUMOEHOMO[38-40].

    The structures of CNT (8, 0), and MnO and CdO2 on CNT (8, 0) are presented in Fig. 1. The top and bridge of carbon atoms are possible sites of adsorption of MnO and CdO2 on CNT (8, 0). The Gad of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 are reported in Table 1. The top positions of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 are more stable than bridge positions by 0.28 and 0.24 eV, respectively.

    Figure 1

    Figure 1.  Structures of CNT, CNT-MnO and CNT-CdO2 and their complexes with metals

    Table 1

    Table 1.  Gad, Band Gap Energy, q and Vcell of CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2
    DownLoad: CSV
    Complex Type Interaction Gad (eV) Band gap energy (eV)
    CNT (8, 0)-MnO Top –3.63 0.05
    CNT (8, 0)-MnO Bridge –3.35 0.08
    CNT (8, 0)-CdO2 Top –3.08 0.11
    CNT (8, 0)-CdO2 Bridge –2.84 0.15
    Complex Metal/metal ion q (Electron) Gad (eV) Vcell (V)
    Li 0.026 –0.18 1.97
    CNT (8, 0) K 0.022 –0.16 1.71
    Li+ 0.311 –2.16
    K+ 0.269 –1.87
    Li 0.062 –0.43 5.13
    CNT (8, 0)-MnO K 0.058 –0.41 4.84
    Li+ 0.805 –5.59
    K+ 0.759 –5.27
    Li 0.067 –0.46 5.99
    CNT (8, 0)-CdO2 K 0.064 –0.44 5.70
    Li+ 0.934 –6.48
    K+ 0.889 –6.17

    The CNT (8, 0)-MnO in top and bridge positions are more stable than CNT (8, 0)-CdO2 by 0.55 and 0.51 eV, respectively. The top positions of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 have lower binding distance than bridge positions 0.13 and 0.12 Å, respectively. The CNT (8, 0)-MnO in top and bridge positions have lower binding distance than CNT (8, 0)-CdO2 by 0.91 and 0.92 Å, respectively.

    The band gap energies of CNT (8, 0)-CdO2 and CNT (8, 0)-MnO are calculated and reported in Table 1. The band gap energies of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 are 0.05~0.15 eV. The CNT (8, 0)-MnO in top and bridge positions have lower band gap energies than CNT (8, 0)-CdO2 by 0.06 and 0.07 eV, respectively.

    The top positions of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 have lower band gap energies bridge positions 0.03 and 0.04 eV, respectively. The addition of MnO and CdO2 molecules to the surface of CNT (8, 0) can decrease the band gap energies of CNT (8, 0) from 1.23 to 0.05~0.15 eV.

    The potentials of CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2 as anode in metal-ion batteries (Li-ion and K-ion battery) are investigated. In Fig. 1, the binding distances of metal ions and CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2 are 1.55, 1.67 and 1.74 Å, respectively.

    The charge (q) values of metal atoms on CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2 surfaces are reported in Table 1. The q of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 of Li and K atoms/ions are higher than CNT (8, 0). The CNT (8, 0)-CdO2 has higher charges than CNT (8, 0)-MnO and CNT (8, 0).

    The Gibbs free energy (Gad) values of metal atoms on CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2 are reported in Table 1. The cell voltages (Vcell) of CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2 as anode electrodes are calculated and reported in Table 1. The |Gad| of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 for Li and K atoms/ions are higher than CNT (8, 0). The |Gad| of CNT (8, 0)-CdO2 for Li and K atoms/ions are higher than CNT (8, 0)-MnO.

    The Vcell values of CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2 as anode electrodes in LIB are 1.97, 5.13 and 5.99 V, respectively, while those in KIB are 1.71, 4.84 and 5.70 V correspondingly.

    The Vcell of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 as anode electrodes in KIB are higher than CNT (8, 0) 3.13 and 4.00 V, respectively. The CNT (8, 0)-CdO2 has the best potential as an anode electrode in LIB and KIB and it can be proposed as a novel material in electricity storage machines.

    The top positions of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 have higher binding distances than bridge positions by 0.13 and 0.12 Å, respectively. The top positions of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 are 0.28 and 0.24 eV more stable than the bridge ones, respectively. The CNT (8, 0)-MnO on top and bridge positions are more stable than CNT (8, 0)-CdO2 by 0.55 and 0.51 eV, respectively. The CNT (8, 0)-CdO2 can have higher charges than CNT (8, 0)-MnO and CNT (8, 0). The Vcell of CNT (8, 0)-MnO and CNT (8, 0)-CdO2 as anode electrodes in LIB and KIB are higher than CNT (8, 0) by 3.15 and 4.01 V, respectively. The Vcell values of CNT (8, 0)-CdO2 as an anode electrode in LIB and KIB are higher than CNT (8, 0)-MnO by 0.85 and 0.86 V, respectively. Finally, the CNT (8, 0)-CdO2 has the best potential as an anode electrode in LIB and KIB and it can be proposed as a novel material in electricity storage machines.


    1. [1]

      Sharifian, S.; Harasek, M.; Haddadi, B. Simulation of membrane gas separation process using aspen plus plus. Chem. Prod. Proc. Mod. 2016, 11, 67–72.

    2. [2]

      Sharifian, S.; Harasek, M. Dynamic simulation of hydrogen generation from renewable energy sources. Chem. Engin. Trans. 2015, 45, 409–414.

    3. [3]

      Sharifian, S.; Asasian Kolur, N.; Harasek, M. Transient simulation and modeling of photovoltaic-PEM water electrolysis. Energy Sour. 2019, 1, 1–11.

    4. [4]

      Ho, K.; Hung, W. An amperometric NO2 gas sensor based on Pt/Na on electrode. Sen. Actuat. B: Chem. 2001, 79, 11–16. doi: 10.1016/S0925-4005(01)00782-1

    5. [5]

      Yang, J. C.; Dutta, P. K. High temperature potentiometric NO2 sensor with asymmetric sensing and reference Pt electrodes. Sen. Actuat. B: Chem. 2010, 143, 459–463. doi: 10.1016/j.snb.2009.09.023

    6. [6]

      Yan, Y.; Miura, N.; Yamazoe, N. Potentiometric sensor using stabilized zirconia for chlorine gas. Sen. Actuat. B: Chem. 1995, 24, 287–290. doi: 10.1016/0925-4005(95)85062-7

    7. [7]

      Khodadadi, A.; Mohajerzadeh, S. S.; Mortazavi, Y.; Miri, A. M. Cerium oxide/SnO2-based semiconductor gas sensors with improved sensitivity to CO. Sen. Actuat. B: Chem. 2001, 80, 267–271. doi: 10.1016/S0925-4005(01)00915-7

    8. [8]

      Korotcenkov, G. Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sen. Actuat. B: Chem. 2007, 121, 664–678. doi: 10.1016/j.snb.2006.04.092

    9. [9]

      Machado, M.; Mota, R.; Piquini, P. Electronic properties of BN nanocones under electric fields. Microelectron. J. 2003, 34, 545–547. doi: 10.1016/S0026-2692(03)00044-2

    10. [10]

      Halpern, J. B.; Bello, A.; Gilcrease, J.; Harris, G. L.; He, M. Biphasic GaN nanowires: growth mechanism and properties. Microelectron. J. 2009, 40, 316–318. doi: 10.1016/j.mejo.2008.07.022

    11. [11]

      Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. B12N12 nano-cage as potential sensor for NO2 detection. Chin. J. Chem. Phys. 2012, 25, 60–64. doi: 10.1088/1674-0068/25/01/60-64

    12. [12]

      Margulis, V. A.; Muryumin, E. E. Chemisorption of single fluorine atoms on the surface of zigzag single-walled carbon nanotubes: a model calculation. Physica B 2007, 390, 134–142. doi: 10.1016/j.physb.2006.08.003

    13. [13]

      Xiao, B.; Zhao, J.; Ding, Y. Theoretical studies of chemisorption of NO2 molecules on SiC nanotube. Surf. Sci. 2010, 604, 1882–1888. doi: 10.1016/j.susc.2010.07.020

    14. [14]

      Mohamed, S. G. Flower-like ZnCo2O4 nanowires: toward a high-performance anode material for Li-ion batteries. RSC Adv. 2013, 3, 20143–20149. doi: 10.1039/c3ra42625d

    15. [15]

      Fujigaya, T. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv. Mater. 2013, 25, 1666–1681. doi: 10.1002/adma.201204461

    16. [16]

      Yi, H. Asymmetric supercapacitors based on carbon nanotubes NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J. Power Sources 2015, 285, 281–290. doi: 10.1016/j.jpowsour.2015.03.106

    17. [17]

      Poizot, P. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. doi: 10.1038/35035045

    18. [18]

      Lai, X. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 2011, 50, 2738–2741. doi: 10.1002/anie.201004900

    19. [19]

      Zu, G. Highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature catalysts. Chem. Mater. 2014, 26, 5761–5772. doi: 10.1021/cm502886t

    20. [20]

      Cao, X. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168. doi: 10.1002/smll.201100990

    21. [21]

      Liang, Y. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. doi: 10.1038/nmat3087

    22. [22]

      Huang, L. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139. doi: 10.1021/nl401086t

    23. [23]

      Raccichini, R. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279. doi: 10.1038/nmat4170

    24. [24]

      Yuan, C. Heterostructured core-shell ZnMn2O4 nanosheets@carbon nanotubes' coaxial nanocables: a competitive anode towards high-performance Li-ion batteries. Nanotechnology 2015, 26, 145401–145408. doi: 10.1088/0957-4484/26/14/145401

    25. [25]

      Datsyuk, V. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840. doi: 10.1016/j.carbon.2008.02.012

    26. [26]

      Xu, Y. J.; Li, J. Q. The interaction of N2 with active sites of a single-wall carbon nanotube. Chem. Phys. Lett. 2005, 412, 439–444. doi: 10.1016/j.cplett.2005.07.053

    27. [27]

      Feng, X.; Irle, S.; Witek, H.; Morokuma, K.; Vidic, R.; Borguet, E. Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J. Am. Chem. Soc. 2005, 127, 10533–10538. doi: 10.1021/ja042998u

    28. [28]

      Boys, S. F.; Bernardi, F. The calculation of small molecular interact ions by the 238 differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. doi: 10.1080/00268977000101561

    29. [29]

      Nakashima, N. Soluble carbon nanotubes: fundamentals and applications. Int. J. Nanosci. 2005, 4, 119–137. doi: 10.1142/S0219581X05002985

    30. [30]

      Razavi, R.; Hosseini, S. M. A.; Ranjbar, M. Production of nanosized synthetic rutile from ilmenite concentrate by sonochemical HCl and H2SO4 leaching. Iran. J. Chem. Chem. Engin. 2014, 33, 29–36.

    31. [31]

      Razavi, R.; Kardani, M. N.; Ghanbari, A.; Lariche, M. J.; Baghban, A. Utilization of LSSVM algorithm for estimating synthetic natural gas density. Petr. Sci. Techn. 2018, 36, 807–812. doi: 10.1080/10916466.2018.1447954

    32. [32]

      Parsaee, Z.; Karachi, N.; Razavi, R. Ultrasound assisted fabrication of a novel optode base on a triazine based Schiff base immobilized on TEOS for copper detection. Ultrason. Sonochem. 2018, 47, 36–46. doi: 10.1016/j.ultsonch.2018.04.007

    33. [33]

      Zahedifar, M.; Razavi, R.; Sheibani, H. Reaction of (chloro carbonyl) phenyl ketene with 5-amino pyrazolones: Synthesis, characterization and theoretical studies of 7-hydroxy-6-phenyl-3-(phenyldiazenyl)pyrazolo[1, 5-a]pyrimidine-2, 5(1H, 4H)-dione derivatives. J. Mol. Struc. 2016, 1125, 730–735. doi: 10.1016/j.molstruc.2016.07.043

    34. [34]

      Karachi, N.; Hosseini, M.; Parsaee, Z.; Razavi, R. Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction. J. Photochem. Photobio. A: Chem. 2018, 364, 344–354. doi: 10.1016/j.jphotochem.2018.06.024

    35. [35]

      Bie, R. J.; Siddiqui, M. K.; Razavi, R.; Taherkhani, M.; Najafi, M. Possibility of C38 and Si19Ge19 nanocages in anode of metal ion batteries: computational examination. Acta Chim. Slov. 2018, 65, 303–311.

    36. [36]

      Gao, W.; Guirao, J. L. G.; Chen, Y. J. A toughness condition for fractional (k, m)-deleted graphs revisited. Acta Math. Sinica 2019, 35, 1227–1237. doi: 10.1007/s10114-019-8169-z

    37. [37]

      Škrekovski, R.; Dimitrov, D.; Zhong, J. M.; Wu, H. L.; Gao, W. Remarks on multiplicative atom-bond connectivity index. IEEE Access 2019, 7, 76806–76811. doi: 10.1109/ACCESS.2019.2920882

    38. [38]

      Gao, W.; Guirao, J. L. G. Parameters and fractional factors in different settings. J. Inequ. Appl. 2019, 1, 152–157.

    39. [39]

      Gao, W.; Ghanbari, B.; Baskonus, H. M. New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative. Chaos. Solitons Fractals 2019, 128, 34–43. doi: 10.1016/j.chaos.2019.07.037

    40. [40]

      Gao, W.; Aamir, M.; Iqbal, Z.; Ishaq, M.; Aslam, A. On irregularity measures of some dendrimers structures. Mathemat. 2019, 7, 271–274.

  • Figure 1  Structures of CNT, CNT-MnO and CNT-CdO2 and their complexes with metals

    Table 1.  Gad, Band Gap Energy, q and Vcell of CNT (8, 0), CNT (8, 0)-MnO and CNT (8, 0)-CdO2

    Complex Type Interaction Gad (eV) Band gap energy (eV)
    CNT (8, 0)-MnO Top –3.63 0.05
    CNT (8, 0)-MnO Bridge –3.35 0.08
    CNT (8, 0)-CdO2 Top –3.08 0.11
    CNT (8, 0)-CdO2 Bridge –2.84 0.15
    Complex Metal/metal ion q (Electron) Gad (eV) Vcell (V)
    Li 0.026 –0.18 1.97
    CNT (8, 0) K 0.022 –0.16 1.71
    Li+ 0.311 –2.16
    K+ 0.269 –1.87
    Li 0.062 –0.43 5.13
    CNT (8, 0)-MnO K 0.058 –0.41 4.84
    Li+ 0.805 –5.59
    K+ 0.759 –5.27
    Li 0.067 –0.46 5.99
    CNT (8, 0)-CdO2 K 0.064 –0.44 5.70
    Li+ 0.934 –6.48
    K+ 0.889 –6.17
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  440
  • HTML全文浏览量:  26
文章相关
  • 发布日期:  2020-03-01
  • 收稿日期:  2019-05-17
  • 接受日期:  2020-02-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章