Citation: ZHANG Li-Ping, CHAI Wan-Dong, JIN Rui-Fa. Rational Design of Star-shaped Molecules with Benzene Core and Naphthalimide Derivatives End Groups as Organic Light-emitting Materials[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1811-1818. doi: 10.14102/j.cnki.0254-5861.2011-1319 shu

Rational Design of Star-shaped Molecules with Benzene Core and Naphthalimide Derivatives End Groups as Organic Light-emitting Materials

  • Corresponding author: JIN Rui-Fa, Ruifajin@163.com
  • Received Date: 13 June 2016
    Accepted Date: 16 August 2016

    Fund Project: Natural Science Foundation of Inner Mongolia Autonomous Region 2015MS0201Research Program of Sciences at Universities of Inner Mongolia Autonomous Region NJZZ235National Natural Science Foundation of China 21563002

Figures(2)

  • A series of star-shaped molecules with benzene core and naphthalimides derivatives end groups have been designed to explore their optical, electronic, and charge transport properties as charge transport and/or luminescent materials for organic light-emitting diodes (OLEDs). The frontier molecular orbitals (FMOs) analysis has turned out that the vertical electronic transitions of absorption and emission are characterized as intramolecular charge transfer (ICT). The calculated results show that the optical and electronic properties of star-shaped molecules are affected by the substituent groups in N-position of 1,8-naphthalimide ring. Our results suggest that star-shaped molecules with n-butyl (1), benzene (2), thiophene (3), thiophene S',S'-dioxide (4), benzo[c][1,2,5]thiadiazole (5), and 2,7a-dihydrobenzo[d]thiazole (6) fragments are expected to be promising candidates for luminescent and electron transport materials for OLEDs. This study should be helpful in further theoretical investigations on such kind of systems and also to the experimental study for charge transport and/or luminescent materials for OLEDs.
  • 加载中
    1. [1]

      Müllen K, Scherf U. Organic Light-emitting Devices, Synthesis, Properties, and Applications[J]. Wiley-VCH, Weinheim, 2006.  

    2. [2]

      Minaev B, Baryshnikov G, Agren H. Principles of phosphorescent organic light emitting devices[J]. Phys. Chem. Chem. Phys, 2014,16:1719-1758. doi: 10.1039/C3CP53806K

    3. [3]

      Sasabe H, Kido J. Development of high performance OLEDs for general lighting[J]. J. Mater. Chem. C, 2013,1:1699-1707. doi: 10.1039/c2tc00584k

    4. [4]

      Che W. L, Liang W. D, Wang J, Lin G. X, Li G. F, Han C, Cui X. J, Zhu D. X. Synthesis, crystal structure and photoluminescence of triphenylamin derivative[J]. J. Mol. Sci, 2013,29:259-264.  

    5. [5]

      Han L. Z, Wang C. T, Ren A. M, Liu Y. L, Liu P. J. Structural and optical properties of triphenylamin-substitutef anthracene derivatives[J]. J. Mol. Sci, 2013,29:146-151.

    6. [6]

      Jin R, ·Irfan A. Theoretical study on photophysical properties of multifunctional star-shaped molecules with 1,8-naphthalimide core for organic light-emitting diode and organic solar cell application[J]. Theor. Chem. Acc, 2015,13489. doi: 10.1007/s00214-015-1693-8

    7. [7]

      Ramachandram B, Saroja G, Sankaran N. B, Samanta A. Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts[J]. J. Phys. Chem. B, 2000,104:11824-11832. doi: 10.1021/jp000333i

    8. [8]

      Ivanov I. P, Dimitrova M. B, Tasheva D. N, Cheshmedzhieva D. V, Lozanov V. S, Ilieva S. V. Synthesis, structural analysis and application of a series of solid-state fluorochromes-aryl hydrazones of 4-hydrazino-N-hexyl-1,8-naphthalimide[J]. Tetrahedron, 2013,69:712-721. doi: 10.1016/j.tet.2012.10.093

    9. [9]

      Li Y, Xu Y, Qian X, Qu B. Naphthalimide-thiazoles as novel photonucleases: molecular design, synthesis, and evaluation[J]. Tetra. Lett, 2004,45:1247-1251. doi: 10.1016/j.tetlet.2003.11.145

    10. [10]

      Grabchev I, Chovelon J. M, Qian X. A copolymer of 4-N,N-dimethylaminoethylene-N-allyl-1,8-naphthalimide with methylmethacrylate as a selective fluorescent chemosensor in homogeneous systems for metal cations[J]. J. Photochem. Photobiol. A, 2003,158:37-43. doi: 10.1016/S1010-6030(03)00100-X

    11. [11]

      Morgado J, Gruner J, Walcott S. P, Yong T. M, Cervini R, Moratti S. C, Holmes A. B, Friend R. H, 4-AcNI—a new polymer for light-emitting diodes. Synth[J]. Met, 1998,95:113-117.

    12. [12]

      Islam A, Cheng C. C, Chi S. H, Lee S. J, Hela G. P, Chen I. C, Cheng C. H. Aminonaphthalic anhydrides as red-emitting materials: electroluminescence, crystal structure, and photophysical properties[J]. J. Phys. Chem. B, 2005,109:5509-5517.  

    13. [13]

      Yang J. X, Wang X. L, Wang X. M, Xu L. H. The synthesis and spectral properties of novel 4-phenylacetylene-1,8-naphthalimide derivatives[J]. Dyes Pigm, 2005,66:83-87. doi: 10.1016/j.dyepig.2004.07.015

    14. [14]

      Magalhaes J. L, Pereira R. V, Triboni E. R, Berci Filho P, Gehlen M. H, Nart F. C. Solvent effect on the photophysical properties of 4-phenoxy-N-methyl-1,8-naphthalimide[J]. J. Photochem. Photobiol. A, 2006,183:165-170. doi: 10.1016/j.jphotochem.2006.03.012

    15. [15]

      Liu Y, Niu F, Lian J, Zeng P, Niu H. Synthesis and properties of starburst amorphous molecules: 1,3,5-tris(1,8-naphthalimide-4-yl)benzenes[J]. Synth. Met, 2010,160:2055-2060. doi: 10.1016/j.synthmet.2010.07.020

    16. [16]

      Frisch , M. J, Trucks , G. W, Schlegel , H. B, Scuseria , G. E, Robb M. A, Cheeseman J. R, Scalmani G, Barone V, Mennucci B, Petersson G. A, Nakatsuji H, Caricato M, Li X, Hratchian H. P, Izmaylov A. F, Bloino J, Zheng G, Sonnenberg J. L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J. A, Peralta Jr. J. E, Ogliaro F, Bearpark M, Heyd J. J, Brothers E, Kudin K. N, Staroverov V. N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J. C, Iyengar S. S, Tomasi J, Cossi M, Rega N, Millam J. M, Klene M, Knox J. E, Cross J. B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R. E, Yazyev O, Austin A. J, Cammi R, Pomelli C, Ochterski J. W, Martin R. L, Morokuma K, Zakrzewski V. G, Voth G. A, Salvador P, Dannenberg J. J, Dapprich S, Daniels A. D, Farkas O, Foresman J. B, Ortiz J. V, Cioslowski J, Fox D. J. Gaussian, Inc., Wallingford CT, 2009, Gaussian 09, Revision A[J]. , .

    17. [17]

      Mancini G, Zazza C, Aschib M, Sannaa N. Conformational analysis and UV/Vis spectroscopic properties of a rotaxane-based molecular machine in acetonitrile dilute solution: when simulations meet experiments[J]. Phys. Chem. Chem. Phys, 2011,13:2342-2349. doi: 10.1039/C0CP01773F

    18. [18]

      Li H, Li N, Sun R, Gu H, Ge J, Lu J, Xu Q, Xia X, Wang L. Dynamic random access memory devices based on functionalized copolymers with pendant hydrazine naphthalimide group[J]. J. Phys. Chem. C, 2011,115:8288-8294.  

    19. [19]

      Li Z, Yang Q, Chang R, Ma G, Chen M, Zhang W. N-Heteroaryl-1,8-naphthalimide fluorescent sensor for water: molecular design, synthesis and proper[J]. Dyes. Pigm, 2011,88:307-314. doi: 10.1016/j.dyepig.2010.07.009

    20. [20]

      Gudeika D, Michaleviciute A, Grazulevicius J. V, Lygaitis R, Grigalevicius S, Jankauskas V, Miasojedovas A, Jursenas S, Sini G. Structure properties relationship of donor-acceptor derivatives of triphenylamine and 1,8-naphthalimide[J]. J. Phys. Chem. C, 2012,116:14811-14819. doi: 10.1021/jp303172b

    21. [21]

      Pearson R. G. Absolute electronegativity and absolute hardness of Lewis acids and bases[J]. J. Am. Chem. Soc, 1985,107:6801-6806. doi: 10.1021/ja00310a009

    22. [22]

      Start M. S. Epoxidation of alkenes by peroxyl radicals in the gas phase: structure-activity relationships[J]. J. Phys. Chem. A, 1997,101:8296-8301. doi: 10.1021/jp972054+

    23. [23]

      Forés M, Duran M, Solà M, Adamowicz L. Excited-state intramolecular proton transfer and rotamerism of 2-(2′-hydroxyvinyl)benzimidazole and 2-(2′-hydroxyphenyl)imidazole[J]. J. Phys. Chem. A, 1999,103:4413-4420. doi: 10.1021/jp9844765

    24. [24]

      Schleyer P, Von R, Allinger N. L, Clark T, Gasteiger J, Kollman P. A, III Schaefer H. F, Schreiners P. R. The Encyclopedia of Computational Chemistry[J]. Wiley, UK, Chichester, 1998.  

    25. [25]

      Marcus R. A. Electron transfer reactions in chemistry. theory and experiment[J]. Rev. Mod. Phys, 1993,65:599-610. doi: 10.1103/RevModPhys.65.599

    26. [26]

      Marcus R. A. Chemical and electrochemical electron-transfer theory[J]. Annu. Rev. Phys. Chem, 1964,15:155-196. doi: 10.1146/annurev.pc.15.100164.001103

    27. [27]

      Lemaur V, Steel M, Beljonne D, Brédas J. L, Cornil J. Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: a full quantum-chemical treatment[J]. J. Am. Chem. Soc, 2005,127:6077-6076. doi: 10.1021/ja042390l

    28. [28]

      Hutchison G. R, Ratner M. A, Marks T. J. Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects[J]. J. Am. Chem. Soc, 2005,127:2339-2350. doi: 10.1021/ja0461421

    29. [29]

      Martinelli N. G, Idé J, Sánchez-Carrera R. S, Coropceanu V, Brédas J. L, Ducasse L, Castet F, Cornil J, Beljonne D. Influence of structural dynamics on polarization energies in anthracene single crystals[J]. J. Phys. Chem. C, 2010,114:20678-20685. doi: 10.1021/jp105843t

    30. [30]

      McMahon D. P, Trois A. Evaluation of the external reorganization energy of polyacenes[J]. J. Phys. Chem. Lett, 2010,1:941-946. doi: 10.1021/jz1001049

    31. [31]

      K?se M. E, Long H, Kim K, Graf P, Ginley D. Charge transport simulations in conjugated dendrimers[J]. J. Phys. Chem. A, 2010,114:4388-4393.  

    32. [32]

      Sakanoue K, Motoda M, Sugimoto M, Sakaki S. A molecular orbital study on the hole transport property of organic amine compounds[J]. J. Phys. Chem. A, 1999,103:5551-5556. doi: 10.1021/jp990206q

    33. [33]

      K?se M. E, Mitchell W. J, Kopidakis N, Chang C. H, Shaheen S. E, Kim K, Rumbles G. Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications[J]. J. Am. Chem. Soc, 2007,129:14257-14270. doi: 10.1021/ja073455y

    34. [34]

      Lin B. C, Cheng C. P, You Z. Q, Hsu C. P. Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): why it is an electron transporter[J]. J. Am. Chem. Soc, 2005,127:66-67. doi: 10.1021/ja045087t

    35. [35]

      Gruhn N. E, da Silva Filho D. A, Bill T. G, Malagoli M, Coropceanu V, Kahn A, Brédas J. L. The vibrational reorganization energy in pentacene: molecular influences on charge transport[J]. J. Am. Chem. Soc, 2002,124:7918-7919. doi: 10.1021/ja0175892

  • 加载中
    1. [1]

      TANG Shan-ShanLIU Jun-BoCHEN GuangJIN Rui-Fa . Theoretical Study on Electronic and Charge Transfer Properties of Oligo[8]thiophene and Its Circular, Hooped, and Helical Derivatives. Chinese Journal of Structural Chemistry, 2014, 33(1): 104-114.

    2. [2]

      WANG YanGAO HuiYANG PingNIE Guang-HuaSONG Xin-Jian . Theoretical Study on the Electronic Structures and Spectral Properties of 1,8-Naphthalimide Derivatives. Chinese Journal of Structural Chemistry, 2014, 33(6): 813-820.

    3. [3]

      Zeng YanDuan RuihongGuo YuanHan GuangchaoLi QingxuYi Yuanping . Electronic, optical, and charge transport properties of A-π-A electron acceptors for organic solar cells: Impact of anti-aromatic π structures. Chinese Chemical Letters, 2019, 30(1): 211-216. doi: 10.1016/j.cclet.2018.05.029

    4. [4]

      Jinqiu MengNan LuoGuanxin ZhangXiangfeng ShaoZitong LiuDeqing ZhangN-Aryl diketopyrrolopyrrole derivatives towards organic optical and electronic materials. Chinese Chemical Letters, 2023, 34(6): 107687-1-107687-7. doi: 10.1016/j.cclet.2022.07.030

    5. [5]

      Liang ZhangYin-Feng WangMeng LiQing-Yu GaoChuan-Feng Chen . Quinoline-based aggregation-induced delayed fluorescence materials for highly efficient non-doped organic light-emitting diodes. Chinese Chemical Letters, 2021, 32(2): 740-744. doi: 10.1016/j.cclet.2020.07.041

    6. [6]

      Bo Hu Chan Yao Qing Wei Wang Xu Ri Huang . The effect of diphenylamine on the electronic, optical, and charge transport properties of BTD-based derivative:Insights from theory. Chinese Chemical Letters, 2011, 22(11): 1383-1386. doi: 10.1016/j.cclet.2011.04.017

    7. [7]

      Peifeng LiJie WangHong ChenHao ZhangCheng LiWenjie XuRenzhi LiLin ZhuNana WangJianpu Wang . Multiple-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chinese Chemical Letters, 2022, 33(2): 1017-1020. doi: 10.1016/j.cclet.2021.06.084

    8. [8]

      Ning SunQin ZouWenyu ChenYingying ZhengKai SunChunbin LiYamin HanLubing BaiChuanxin WeiJinyi LinChengrong YinJianguo WangWei Huang . Fluorene pendant-functionalization of poly(N-vinylcarbazole) as deep-blue fluorescent and host materials for polymer light-emitting diodes. Chinese Chemical Letters, 2023, 34(8): 108078-1-108078-6. doi: 10.1016/j.cclet.2022.108078

    9. [9]

      Ting ZhangDong-Qing XuJun-Ming ChenPing ZhangXu-Chun Wanga . Synthesis and characterization of carbazole-based dendrimers as bipolar host materials for green phosphorescent organic light emitting diodes. Chinese Chemical Letters, 2016, 27(03): 441-446. doi: 10.1016/j.cclet.2015.12.028

    10. [10]

      Yuchen LiQijun LiShuai MengYukun QinDengke ChengHailing GuZifei WangYunxia YeJing Tan . Ultrabroad-band, white light emission from carbon dot-based materials with hybrid fluorescence/phosphorescence for single component white light-emitting diodes. Chinese Chemical Letters, 2023, 34(5): 107794-1-107794-5. doi: 10.1016/j.cclet.2022.107794

    11. [11]

      ZHAO Pu-SuJING LongLI Yu-FengZHU YuanWANG JingJIAN Fang-Fang . Comparative Studies on Two 1,8-Naphthalimide Derivatives with Experimental and Theoretical Methods. Chinese Journal of Structural Chemistry, 2014, 33(5): 676-686.

    12. [12]

      Zhang LiangLi MengGao QingyuChen Chuanfeng . Synthesis and Properties of New Organic Luminescent Materials Based on Halogen-Substituted Phthalimides. Chinese Journal of Organic Chemistry, 2020, 40(2): 516-520. doi: 10.6023/cjoc201909012

    13. [13]

      Xueying LuYajing SunZhicheng ZhangZhigang ShuaiWenping Hu . Simultaneous studies of pressure effect on charge transport and photophysical properties in organic semiconductors: A theoretical investigation. Chinese Chemical Letters, 2021, 32(3): 1233-1236. doi: 10.1016/j.cclet.2020.08.028

    14. [14]

      Yan Zi'angZou LeiMa Xiang . Recent Advances in Pure Organic Luminescent Supramolecular Materials. Chinese Journal of Organic Chemistry, 2020, 40(7): 1814-1822. doi: 10.6023/cjoc202004003

    15. [15]

      Yan MaQian-Yun TangJi ZhuLi-Hong WangCheng Yao . Fluorescent and thermal properties of siloxane-polyurethanes based on 1, 8-naphthalimide. Chinese Chemical Letters, 2014, 25(05): 680-686. doi: 10.1016/j.cclet.2014.01.048

    16. [16]

      Ablikim OboldMing ZhangFeng Li . Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton. Chinese Chemical Letters, 2016, 27(8): 1345-1349. doi: 10.1016/j.cclet.2016.06.030

    17. [17]

      Shi-Yang ShaoJun-Qiao DingLi-Xiang Wang . New applications of poly(arylene ether)s in organic light-emitting diodes. Chinese Chemical Letters, 2016, 27(8): 1201-1208. doi: 10.1016/j.cclet.2016.07.006

    18. [18]

      Yang BingZhao JianfengWang ZepengYang ZhenlinLin ZongqiongZhang YanniLi JieweiXie LinghaiAn ZhongfuZhang HongmeiWeng JienaHuang Wei . Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes. Chinese Chemical Letters, 2019, 30(11): 1969-1973. doi: 10.1016/j.cclet.2019.08.054

    19. [19]

      Shen XuQingqing YangYing ZhangHui LiQin XueGuohua XieMinzhao GuJibiao JinLing HuangRunfeng Chen . Solution-processed multi-resonance organic light-emitting diodes with high efficiency and narrowband emission. Chinese Chemical Letters, 2021, 32(4): 1372-1376. doi: 10.1016/j.cclet.2020.10.022

    20. [20]

      Wenying MiNa Shao . Orange-emitting bimetallic nanoclusters combined with cyan-emitting Fe@TAOH as white light-emitting materials. Chinese Chemical Letters, 2022, 33(1): 298-303. doi: 10.1016/j.cclet.2021.06.039

  • Rational Design.docx

Metrics
  • PDF Downloads(0)
  • Abstract views(5336)
  • HTML views(362)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return