Citation: LIU Jun-Bo, TANG Shan-Shan, DAI Zheng-Qiang, WANG Yan, GAO Qian, JIN Rui-Fa. Computer Simulation and Experimental Investigations of Phenobarbital Molecular Imprinting System[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1840-1848. doi: 10.14102/j.cnki.0254-5861.2011-1238 shu

Computer Simulation and Experimental Investigations of Phenobarbital Molecular Imprinting System

  • Corresponding author: LIU Jun-Bo, liujb@mail.ccut.edu.cn TANG Shan-Shan, tangshanshan81@163.com
  • Received Date: 8 April 2016
    Accepted Date: 1 July 2016

    Fund Project: Science and Technology Development Program of Jilin Province 20150101018JC and 20130206099SFNational Natural Science Foundation of China 21302062 and 21563002

Figures(5)

  • The interaction process between the phenobarbital (PHN) and acrylamide (AM) was studied using the M062X/6-31G(d,p) method. The PHN and AM were used as the template and functional monomer, respectively. The molecular electrostatic potential (MEP) was simulated for predicting the reactive sites. The atoms in molecules theory helped to reveal the imprinting mechanism and optimize the molar ratios for PHN and AM. The molecular imprinted polymers (MIPs) containing PHN were synthesized through the precipitation polymerization. The diameter range of the obtained MIPs was from 150 to 390 nm. According to the computational results, MIPs with the molar ratio of PHN and AM equal to 1:6 showed high selective adsorption for PHN. The apparent maximum adsorption quantity (Qmax) of MIPs toward PHN was 7.9 mg/g, and the Qmax of nonimprinted polymer microspheres (NIPs) was 3.2 mg/g. Herein, the studies can provide theoretical and experimental references for the controllable fabrication of MIPs.
  • 加载中
    1. [1]

      Moein M. M, Javanbakht M, Karimi M, Akbari-Adergani B. Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled on-line with high performance liquidchromatography for selective determination of acesulfame[J]. Talanta, 2015,134:340-347. doi: 10.1016/j.talanta.2014.11.011

    2. [2]

      Zhang Y. Q, Shan X, Gao X. Q. Development of a molecularly imprinted membrane for selective separation of flavonoids[J]. Sep. Purif. Technol, 2011,76:337-344. doi: 10.1016/j.seppur.2010.10.024

    3. [3]

      Ji J, Zhou Z, Zhao X. L, Sun J. D, Sun X. L. Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol[J]. Biosens. Bioelectron, 2015,66:590-595. doi: 10.1016/j.bios.2014.12.014

    4. [4]

      Zhai H. Y, Su Z. H, Chen Z. G, Liu Z. P, Yuan K S, Huang L. Molecularly imprinted coated graphene oxide solid-phase extraction monolithic capillary column for selective extraction and sensitive determination of phloxine B in coffee bean[J]. Anal. Chim. Acta, 2015,865:16-21. doi: 10.1016/j.aca.2015.01.028

    5. [5]

      Wyszomirski M, Prus W. Molecular modelling of a template substitute and monomers used in molecular imprinting for aflatoxin B1 micro-HPLC analysis[J]. Mol. Simulat, 2012,38:892-895. doi: 10.1080/08927022.2012.667876

    6. [6]

      Luo D, Zhao Z, Zhang L, Wang Q, Wang J. On the structure of molecularly imprinted polymers by modifying charge on functional groups through molecular dynamics simulations[J]. Mol. Simulat, 2013,40:431-438.  

    7. [7]

      Su T. T, Liu J. B, Tang S. S, Chang H. B, Jin R. F. Theoretical study on the structures and properties of phenobarbital imprinted polymers.Chin[J]. J. Struct. Chem, 2014,33:1421-1430.  

    8. [8]

      Liu J. B, Shi Y, Tang S. S, Jin R. F. Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid[J]. J. Sep. Sci, 2015,38:1065-1071. doi: 10.1002/jssc.201401309

    9. [9]

      Mujahid A, Iqbal N, Afzal A. Bioimprinting strategies: from soft lithography to biomimetic sensors and beyond[J]. Biotechnol. Adv, 2013,31:1435-1447. doi: 10.1016/j.biotechadv.2013.06.008

    10. [10]

      Hua K. C, Zhang L, Zhang Z. H, Guo Y, Guo T. Y. Surface hydrophilic modification with a sugar moiety for a uniform-sized polymer molecularly imprinted for phenobarbital in serum[J]. Acta Biomater, 2011,7:3086-3093. doi: 10.1016/j.actbio.2011.05.006

    11. [11]

      Hu S. G, Wang S. W, He X. W. An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high-performance liquid chromatography[J]. Analyst, 2003,128:1485-1489. doi: 10.1039/b310775b

    12. [12]

      Yoshimatsu K, Reimhult K, Krozer A, Mosbacha K, Sodeb K, Yea L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle suitable for different analytical applications[J]. Anal. Chim. Acta, 2007,584:112-121. doi: 10.1016/j.aca.2006.11.004

    13. [13]

      Sun J. N, Liu J. B, Tang S. S, Jin R. F. Theoretical researches on the self-assembly system of ciprofloxacin imprinted polymers[J]. Chin. J. Struct. Chem, 2013,32:1204-1210.

    14. [14]

      Siripairoj W, Kaewchada A, Jaree A. Synthesis of molecularly imprinted polymers for the separation of gamma-oryzanol by using methacrylic acid as functional monomer[J]. J. Taiwan. Inst. Chem. E, 2014,45:338-346. doi: 10.1016/j.jtice.2013.06.035

    15. [15]

      Gohary N. A. E, Madbouly A, Nashar R. M. E, Mizaikoff B. Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir[J]. Biosens. Bioelectron, 2015,65:108-114. doi: 10.1016/j.bios.2014.10.024

    16. [16]

      Bai J. W, Zhong F. C, Liu X. Y, Zhang J. H. Preparation and evaluation of magnetic imprinted polymers for 2,4,6-trinitrotoluene by surface imprinting[J]. Poly. Int, 2014,63:1487-1493. doi: 10.1002/pi.2014.63.issue-8

    17. [17]

      Wen Z, Ni T, Jia X, Wang G. P, Long W, Li X. L, Liao S, Hou D. Synthesis, recognition characteristics and properties of l-3-n-butylphthalide molecularly imprinted polymers as sorbent for solid-phase extraction through precipitation polymerization[J]. Mat. Sci. Eng. C, 2015,53:166-174. doi: 10.1016/j.msec.2015.04.034

    18. [18]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Baroe, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi I.; Gomperts R.; Martin R. L.; Fox D. J, Keith T, Al-Laham M. A, Peng C. Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P. M. W, Johnson B, Chen W, Wong M. W, Andres J. L, Gonzalez C, Head-Gordon M, Replogle E. S, Pople J. A.Gaussian 09, Revision A.2 Pittsburgh PA: Gaussian Inc, 2009.

    19. [19]

      Bader R. F. W. A quantum theory of molecular structure and its applications[J]. Chem. Rev, 1991,91:893-928. doi: 10.1021/cr00005a013

    20. [20]

      Bhawani Datt J, Anubha S, Poonam T, Sudha J. Molecular structure, vibrational spectra and HOMO, LUMO analysis of yohimbine hydrochloride by density functional theory and ab initio Hartree-Fock calculations[J]. Spectrochim. Acta Part A, 2011,82:270-278. doi: 10.1016/j.saa.2011.07.047

    21. [21]

      Popelier P. L. A. Characterization of a dihydrogen bond on the basis of the electron density[J]. J. Phys. Chem. A, 1998,102:1873-1878. doi: 10.1021/jp9805048

  • 加载中
    1. [1]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    2. [2]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    3. [3]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    4. [4]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    5. [5]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    6. [6]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    7. [7]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    10. [10]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    11. [11]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    12. [12]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    15. [15]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    16. [16]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    17. [17]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    18. [18]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    19. [19]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    20. [20]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

Metrics
  • PDF Downloads(0)
  • Abstract views(4651)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return